- Configuring ingress cluster traffic using an Ingress Controller
- Using Ingress Controllers and routes
- Prerequisites
- Creating a project and service
- Exposing the service by creating a route
- Configuring Ingress Controller sharding by using route labels
- Configuring Ingress Controller sharding by using namespace labels
- Creating a route for Ingress Controller sharding
- Additional resources
Configuring ingress cluster traffic using an Ingress Controller
OKD provides methods for communicating from outside the cluster with services running in the cluster. This method uses an Ingress Controller.
Using Ingress Controllers and routes
The Ingress Operator manages Ingress Controllers and wildcard DNS.
Using an Ingress Controller is the most common way to allow external access to an OKD cluster.
An Ingress Controller is configured to accept external requests and proxy them based on the configured routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web applications and services that work over TLS with SNI.
Work with your administrator to configure an Ingress Controller to accept external requests and proxy them based on the configured routes.
The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can work with the edge Ingress Controller without having to contact the administrators.
By default, every Ingress Controller in the cluster can admit any route created in any project in the cluster.
The Ingress Controller:
Has two replicas by default, which means it should be running on two worker nodes.
Can be scaled up to have more replicas on more nodes.
The procedures in this section require prerequisites performed by the cluster administrator. |
Prerequisites
Before starting the following procedures, the administrator must:
Set up the external port to the cluster networking environment so that requests can reach the cluster.
Make sure there is at least one user with cluster admin role. To add this role to a user, run the following command:
$ oc adm policy add-cluster-role-to-user cluster-admin username
Have an OKD cluster with at least one master and at least one node and a system outside the cluster that has network access to the cluster. This procedure assumes that the external system is on the same subnet as the cluster. The additional networking required for external systems on a different subnet is out-of-scope for this topic.
Creating a project and service
If the project and service that you want to expose do not exist, first create the project, then the service.
If the project and service already exist, skip to the procedure on exposing the service to create a route.
Prerequisites
- Install the
oc
CLI and log in as a cluster administrator.
Procedure
Create a new project for your service by running the
oc new-project
command:$ oc new-project myproject
Use the
oc new-app
command to create your service:$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git
To verify that the service was created, run the following command:
$ oc get svc -n myproject
Example output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s
By default, the new service does not have an external IP address.
Exposing the service by creating a route
You can expose the service as a route by using the oc expose
command.
Procedure
To expose the service:
Log in to OKD.
Log in to the project where the service you want to expose is located:
$ oc project myproject
Run the
oc expose service
command to expose the route:$ oc expose service nodejs-ex
Example output
route.route.openshift.io/nodejs-ex exposed
To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service is accessible from outside the cluster.
Use the
oc get route
command to find the route’s host name:$ oc get route
Example output
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None
Use cURL to check that the host responds to a GET request:
$ curl --head nodejs-ex-myproject.example.com
Example output
HTTP/1.1 200 OK
...
Configuring Ingress Controller sharding by using route labels
Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in any namespace that is selected by the route selector.
Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to one Ingress Controller and company B to another.
Procedure
Edit the
router-internal.yaml
file:# cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: sharded
namespace: openshift-ingress-operator
spec:
domain: <apps-sharded.basedomain.example.net>
nodePlacement:
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker: ""
routeSelector:
matchLabels:
type: sharded
status: {}
kind: List
metadata:
resourceVersion: ""
selfLink: ""
Apply the Ingress Controller
router-internal.yaml
file:# oc apply -f router-internal.yaml
The Ingress Controller selects routes in any namespace that have the label
type: sharded
.
Configuring Ingress Controller sharding by using namespace labels
Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any route in any namespace that is selected by the namespace selector.
Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to one Ingress Controller and company B to another.
If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress Controller with value |
Procedure
Edit the
router-internal.yaml
file:# cat router-internal.yaml
Example output
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: sharded
namespace: openshift-ingress-operator
spec:
domain: <apps-sharded.basedomain.example.net>
nodePlacement:
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker: ""
namespaceSelector:
matchLabels:
type: sharded
status: {}
kind: List
metadata:
resourceVersion: ""
selfLink: ""
Apply the Ingress Controller
router-internal.yaml
file:# oc apply -f router-internal.yaml
The Ingress Controller selects routes in any namespace that is selected by the namespace selector that have the label
type: sharded
.
Creating a route for Ingress Controller sharding
A route allows you to host your application at a URL. In this case, the hostname is not set and the route uses a subdomain instead. When you specify a subdomain, you automatically use the domain of the Ingress Controller that exposes the route. For situations where a route is exposed by multiple Ingress Controllers, the route is hosted at multiple URLs.
The following procedure describes how to create a route for Ingress Controller sharding, using the hello-openshift
application as an example.
Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to one Ingress Controller and company B to another.
Prerequisites
You installed the OpenShift CLI (
oc
).You are logged in as a project administrator.
You have a web application that exposes a port and an HTTP or TLS endpoint listening for traffic on the port.
You have configured the Ingress Controller for sharding.
Procedure
Create a project called
hello-openshift
by running the following command:$ oc new-project hello-openshift
Create a pod in the project by running the following command:
$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-openshift/hello-pod.json
Create a service called
hello-openshift
by running the following command:$ oc expose pod/hello-openshift
Create a route definition called
hello-openshift-route.yaml
:YAML definition of the created route for sharding:
apiVersion: route.openshift.io/v1
kind: Route
metadata:
labels:
type: sharded (1)
name: hello-openshift-edge
namespace: hello-openshift
spec:
subdomain: hello-openshift (2)
tls:
termination: edge
to:
kind: Service
name: hello-openshift
1 Both the label key and its corresponding label value must match the ones specified in the Ingress Controller. In this example, the Ingress Controller has the label key and value type: sharded
.2 The route will be exposed using the value of the subdomain
field. When you specify thesubdomain
field, you must leave the hostname unset. If you specify both thehost
andsubdomain
fields, then the route will use the value of thehost
field, and ignore thesubdomain
field.Use
hello-openshift-route.yaml
to create a route to thehello-openshift
application by running the following command:$ oc -n hello-openshift create -f hello-openshift-route.yaml
Verification
Get the status of the route with the following command:
$ oc -n hello-openshift get routes/hello-openshift-edge -o yaml
The resulting
Route
resource should look similar to the following:Example output
apiVersion: route.openshift.io/v1
kind: Route
metadata:
labels:
type: sharded
name: hello-openshift-edge
namespace: hello-openshift
spec:
subdomain: hello-openshift
tls:
termination: edge
to:
kind: Service
name: hello-openshift
status:
ingress:
- host: hello-openshift.<apps-sharded.basedomain.example.net> (1)
routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> (2)
routerName: sharded (3)
1 The hostname the Ingress Controller, or router, uses to expose the route. The value of the host
field is automatically determined by the Ingress Controller, and uses its domain. In this example, the domain of the Ingress Controller is<apps-sharded.basedomain.example.net>
.2 The hostname of the Ingress Controller. 3 The name of the Ingress Controller. In this example, the Ingress Controller has the name sharded
.
Additional resources
- The Ingress Operator manages wildcard DNS. For more information, see Ingress Operator in OKD, Installing a cluster on bare metal, and Installing a cluster on vSphere.