Creating a compute machine set on Azure Stack Hub
You can create a different compute machine set to serve a specific purpose in your OKD cluster on Microsoft Azure Stack Hub. For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.
This process is not applicable for clusters with manually provisioned machines. You can use the advanced machine management and scaling capabilities only in clusters where the Machine API is operational. |
Machine API overview
The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OKD resources.
For OKD 4.12 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OKD 4.12 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.
The two primary resources are:
Machines
A fundamental unit that describes the host for a node. A machine has a providerSpec
specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet
resources are groups of compute machines. Compute machine sets are to compute machines as replica sets are to pods. If you need more compute machines or must scale them down, you change the replicas
field on the MachineSet
resource to meet your compute need.
Control plane machines cannot be managed by compute machine sets. Control plane machine sets provide management capabilities for supported control plane machines that are similar to what compute machine sets provide for compute machines. For more information, see “Managing control plane machines”. |
The following custom resources add more capabilities to your cluster:
Machine autoscaler
The MachineAutoscaler
resource automatically scales compute machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and the machine autoscaler maintains that range of nodes.
The MachineAutoscaler
object takes effect after a ClusterAutoscaler
object exists. Both ClusterAutoscaler
and MachineAutoscaler
resources are made available by the ClusterAutoscalerOperator
object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OKD implementation, it is integrated with the Machine API by extending the compute machine set API. You can use the cluster autoscaler to manage your cluster in the following ways:
Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU
Set the priority so that the cluster prioritizes pods and new nodes are not brought online for less important pods
Set the scaling policy so that you can scale up nodes but not scale them down
Machine health check
The MachineHealthCheck
resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.
In OKD version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OKD version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the installation program sends out compute machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. In global Azure regions that do not have multiple availability zones, you can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over the life of a cluster.
Sample YAML for a compute machine set custom resource on Azure Stack Hub
This sample YAML defines a compute machine set that runs in the 1
Microsoft Azure zone in a region and creates nodes that are labeled with node-role.kubernetes.io/<role>: ""
.
In this sample, <infrastructure_id>
is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role>
is the node label to add.
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
machine.openshift.io/cluster-api-machine-role: <role> (2)
machine.openshift.io/cluster-api-machine-type: <role> (2)
name: <infrastructure_id>-<role>-<region> (3)
namespace: openshift-machine-api
spec:
replicas: 1
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-<region> (3)
template:
metadata:
creationTimestamp: null
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
machine.openshift.io/cluster-api-machine-role: <role> (2)
machine.openshift.io/cluster-api-machine-type: <role> (2)
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>-<region> (3)
spec:
metadata:
creationTimestamp: null
labels:
node-role.kubernetes.io/<role>: "" (2)
providerSpec:
value:
apiVersion: machine.openshift.io/v1beta1
availabilitySet: <availability_set> (6)
credentialsSecret:
name: azure-cloud-credentials
namespace: openshift-machine-api
image:
offer: ""
publisher: ""
resourceID: /resourceGroups/<infrastructure_id>-rg/providers/Microsoft.Compute/images/<infrastructure_id> (1)
sku: ""
version: ""
internalLoadBalancer: ""
kind: AzureMachineProviderSpec
location: <region> (4)
managedIdentity: <infrastructure_id>-identity (1)
metadata:
creationTimestamp: null
natRule: null
networkResourceGroup: ""
osDisk:
diskSizeGB: 128
managedDisk:
storageAccountType: Premium_LRS
osType: Linux
publicIP: false
publicLoadBalancer: ""
resourceGroup: <infrastructure_id>-rg (1)
sshPrivateKey: ""
sshPublicKey: ""
subnet: <infrastructure_id>-<role>-subnet (1) (2)
userDataSecret:
name: worker-user-data (2)
vmSize: Standard_DS4_v2
vnet: <infrastructure_id>-vnet (1)
zone: "1" (5)
1 | Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
You can obtain the subnet by running the following command:
You can obtain the vnet by running the following command:
|
2 | Specify the node label to add. |
3 | Specify the infrastructure ID, node label, and region. |
4 | Specify the region to place machines on. |
5 | Specify the zone within your region to place machines on. Be sure that your region supports the zone that you specify. |
6 | Specify the availability set for the cluster. |
Creating a compute machine set
In addition to the ones created by the installation program, you can create your own compute machine sets to dynamically manage the machine compute resources for specific workloads of your choice.
Prerequisites
Deploy an OKD cluster.
Install the OpenShift CLI (
oc
).Log in to
oc
as a user withcluster-admin
permission.Create an availability set in which to deploy Azure Stack Hub compute machines.
Procedure
Create a new YAML file that contains the compute machine set custom resource (CR) sample and is named
<file_name>.yaml
.Ensure that you set the
<availabilitySet>
,<clusterID>
, and<role>
parameter values.If you are not sure which value to set for a specific field, you can check an existing compute machine set from your cluster:
$ oc get machinesets -n openshift-machine-api
Example output
NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m
Check values of a specific compute machine set:
$ oc get machineset <machineset_name> -n \
openshift-machine-api -o yaml
Example output
...
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: agl030519-vplxk (1)
machine.openshift.io/cluster-api-machine-role: worker (2)
machine.openshift.io/cluster-api-machine-type: worker
machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a
1 The cluster ID. 2 A default node label.
Create the new
MachineSet
CR:$ oc create -f <file_name>.yaml
View the list of compute machine sets:
$ oc get machineset -n openshift-machine-api
Example output
NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-infra-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m
When the new compute machine set is available, the
DESIRED
andCURRENT
values match. If the compute machine set is not available, wait a few minutes and run the command again.
Enabling Azure boot diagnostics
You can enable boot diagnostics on Azure machines that your machine set creates.
Prerequisites
- Have an existing Microsoft Azure Stack Hub cluster.
Procedure
Add the
diagnostics
configuration that is applicable to your storage type to theproviderSpec
field in your machine set YAML file:For an Azure Managed storage account:
providerSpec:
diagnostics:
boot:
storageAccountType: AzureManaged (1)
1 Specifies an Azure Managed storage account. For an Azure Unmanaged storage account:
providerSpec:
diagnostics:
boot:
storageAccountType: CustomerManaged (1)
customerManaged:
storageAccountURI: https://<storage-account>.blob.core.windows.net (2)
1 Specifies an Azure Unmanaged storage account. 2 Replace <storage-account>
with the name of your storage account.Only the Azure Blob Storage data service is supported.
Verification
- On the Microsoft Azure portal, review the Boot diagnostics page for a machine deployed by the machine set, and verify that you can see the serial logs for the machine.
Enabling customer-managed encryption keys for a machine set
You can supply an encryption key to Azure to encrypt data on managed disks at rest. You can enable server-side encryption with customer-managed keys by using the Machine API.
An Azure Key Vault, a disk encryption set, and an encryption key are required to use a customer-managed key. The disk encryption set must be in a resource group where the Cloud Credential Operator (CCO) has granted permissions. If not, an additional reader role is required to be granted on the disk encryption set.
Prerequisites
Procedure
Configure the disk encryption set under the
providerSpec
field in your machine set YAML file. For example:providerSpec:
value:
osDisk:
diskSizeGB: 128
managedDisk:
diskEncryptionSet:
id: /subscriptions/<subscription_id>/resourceGroups/<resource_group_name>/providers/Microsoft.Compute/diskEncryptionSets/<disk_encryption_set_name>
storageAccountType: Premium_LRS
Additional resources