Using PTP hardware

You can configure linuxptp services and use PTP-capable hardware in OKD cluster nodes.

About PTP hardware

You can use the OKD console or OpenShift CLI (oc) to install PTP by deploying the PTP Operator. The PTP Operator creates and manages the linuxptp services and provides the following features:

  • Discovery of the PTP-capable devices in the cluster.

  • Management of the configuration of linuxptp services.

  • Notification of PTP clock events that negatively affect the performance and reliability of your application with the PTP Operator cloud-event-proxy sidecar.

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-metal infrastructure.

About PTP

Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction with hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than Network Time Protocol (NTP).

The linuxptp package includes the ptp4l and phc2sys programs for clock synchronization. ptp4l implements the PTP boundary clock and ordinary clock. ptp4l synchronizes the PTP hardware clock to the source clock with hardware time stamping and synchronizes the system clock to the source clock with software time stamping. phc2sys is used for hardware time stamping to synchronize the system clock to the PTP hardware clock on the network interface controller (NIC).

Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The clocks synchronized by PTP are organized in a source-destination hierarchy. The hierarchy is created and updated automatically by the best master clock (BMC) algorithm, which runs on every clock. Destination clocks are synchronized to source clocks, and destination clocks can themselves be the source for other downstream clocks. The following types of clocks can be included in configurations:

Grandmaster clock

The grandmaster clock provides standard time information to other clocks across the network and ensures accurate and stable synchronisation. It writes time stamps and responds to time requests from other clocks. Grandmaster clocks can be synchronized to a Global Positioning System (GPS) time source.

Ordinary clock

The ordinary clock has a single port connection that can play the role of source or destination clock, depending on its position in the network. The ordinary clock can read and write time stamps.

Boundary clock

The boundary clock has ports in two or more communication paths and can be a source and a destination to other destination clocks at the same time. The boundary clock works as a destination clock upstream. The destination clock receives the timing message, adjusts for delay, and then creates a new source time signal to pass down the network. The boundary clock produces a new timing packet that is still correctly synced with the source clock and can reduce the number of connected devices reporting directly to the source clock.

Advantages of PTP over NTP

One of the main advantages that PTP has over NTP is the hardware support present in various network interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for delays in message transfer and improves the accuracy of time synchronization. To achieve the best possible accuracy, it is recommended that all networking components between PTP clocks are PTP hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can time stamp the PTP packets at the exact moment they are sent and received. Compare this to software-based PTP, which requires additional processing of the PTP packets by the operating system.

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable the chrony time service (chronyd) using a MachineConfig custom resource. For more information, see Disabling chrony time service.

Using PTP with dual NIC hardware

OKD supports single and dual NIC hardware for precision PTP timing in the cluster.

For 5G telco networks that deliver mid-band spectrum coverage, each virtual distributed unit (vDU) requires connections to 6 radio units (RUs). To make these connections, each vDU host requires 2 NICs configured as boundary clocks.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate ptp4l instances for each NIC feeding the downstream clocks.

Installing the PTP Operator using the CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites

  • A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

Procedure

  1. Create a namespace for the PTP Operator.

    1. Save the following YAML in the ptp-namespace.yaml file:

      1. apiVersion: v1
      2. kind: Namespace
      3. metadata:
      4. name: openshift-ptp
      5. annotations:
      6. workload.openshift.io/allowed: management
      7. labels:
      8. name: openshift-ptp
      9. openshift.io/cluster-monitoring: "true"
    2. Create the Namespace CR:

      1. $ oc create -f ptp-namespace.yaml
  2. Create an Operator group for the PTP Operator.

    1. Save the following YAML in the ptp-operatorgroup.yaml file:

      1. apiVersion: operators.coreos.com/v1
      2. kind: OperatorGroup
      3. metadata:
      4. name: ptp-operators
      5. namespace: openshift-ptp
      6. spec:
      7. targetNamespaces:
      8. - openshift-ptp
    2. Create the OperatorGroup CR:

      1. $ oc create -f ptp-operatorgroup.yaml
  3. Subscribe to the PTP Operator.

    1. Save the following YAML in the ptp-sub.yaml file:

      1. apiVersion: operators.coreos.com/v1alpha1
      2. kind: Subscription
      3. metadata:
      4. name: ptp-operator-subscription
      5. namespace: openshift-ptp
      6. spec:
      7. channel: "stable"
      8. name: ptp-operator
      9. source: redhat-operators
      10. sourceNamespace: openshift-marketplace
    2. Create the Subscription CR:

      1. $ oc create -f ptp-sub.yaml
  4. To verify that the Operator is installed, enter the following command:

    1. $ oc get csv -n openshift-ptp -o custom-columns=Name:.metadata.name,Phase:.status.phase

    Example output

    1. Name Phase
    2. 4.11.0-202201261535 Succeeded

Installing the PTP Operator using the web console

As a cluster administrator, you can install the PTP Operator using the web console.

You have to create the namespace and operator group as mentioned in the previous section.

Procedure

  1. Install the PTP Operator using the OKD web console:

    1. In the OKD web console, click OperatorsOperatorHub.

    2. Choose PTP Operator from the list of available Operators, and then click Install.

    3. On the Install Operator page, under A specific namespace on the cluster select openshift-ptp. Then, click Install.

  2. Optional: Verify that the PTP Operator installed successfully:

    1. Switch to the OperatorsInstalled Operators page.

    2. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of InstallSucceeded.

      During installation an Operator might display a Failed status. If the installation later succeeds with an InstallSucceeded message, you can ignore the Failed message.

      If the operator does not appear as installed, to troubleshoot further:

      • Go to the OperatorsInstalled Operators page and inspect the Operator Subscriptions and Install Plans tabs for any failure or errors under Status.

      • Go to the WorkloadsPods page and check the logs for pods in the openshift-ptp project.

Configuring PTP devices

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to OKD.

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node. It creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a compatible PTP-capable network device.

Discovering PTP capable network devices in your cluster

  • To return a complete list of PTP capable network devices in your cluster, run the following command:

    1. $ oc get NodePtpDevice -n openshift-ptp -o yaml

    Example output

    1. apiVersion: v1
    2. items:
    3. - apiVersion: ptp.openshift.io/v1
    4. kind: NodePtpDevice
    5. metadata:
    6. creationTimestamp: "2022-01-27T15:16:28Z"
    7. generation: 1
    8. name: dev-worker-0 (1)
    9. namespace: openshift-ptp
    10. resourceVersion: "6538103"
    11. uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
    12. spec: {}
    13. status:
    14. devices: (2)
    15. - name: eno1
    16. - name: eno2
    17. - name: eno3
    18. - name: eno4
    19. - name: enp5s0f0
    20. - name: enp5s0f1
    21. ...
    1The value for the name parameter is the same as the name of the parent node.
    2The devices collection includes a list of the PTP capable devices that the PTP Operator discovers for the node.

Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom resource (CR) object.

Use the following example PtpConfig CR as the basis to linuxptp services as ordinary clock for your particular hardware and environment. This example CR also configures PTP fast events by setting appropriate values for ptp4lOpts, ptp4lConf and ptpClockThreshold. ptpClockThreshold is used only when events are enabled.

Prerequisites

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure

  1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-config.yaml file.

    1. apiVersion: ptp.openshift.io/v1
    2. kind: PtpConfig
    3. metadata:
    4. name: ordinary-clock-ptp-config (1)
    5. namespace: openshift-ptp
    6. spec:
    7. profile: (2)
    8. - name: "<profile_name>" (3)
    9. interface: ""<interface_name>" (4)
    10. ptp4lOpts: "-2 -s --summary_interval -4" (5)
    11. phc2sysOpts: "-a -r -n 24" (6)
    12. ptp4lConf: | (7)
    13. [global]
    14. #
    15. # Default Data Set
    16. #
    17. twoStepFlag 1
    18. slaveOnly 0
    19. priority1 128
    20. priority2 128
    21. domainNumber 24
    22. #utc_offset 37
    23. clockClass 248
    24. clockAccuracy 0xFE
    25. offsetScaledLogVariance 0xFFFF
    26. free_running 0
    27. freq_est_interval 1
    28. dscp_event 0
    29. dscp_general 0
    30. dataset_comparison ieee1588
    31. G.8275.defaultDS.localPriority 128
    32. #
    33. # Port Data Set
    34. #
    35. logAnnounceInterval -3
    36. logSyncInterval -4
    37. logMinDelayReqInterval -4
    38. logMinPdelayReqInterval -4
    39. announceReceiptTimeout 3
    40. syncReceiptTimeout 0
    41. delayAsymmetry 0
    42. fault_reset_interval 4
    43. neighborPropDelayThresh 20000000
    44. masterOnly 0
    45. G.8275.portDS.localPriority 128
    46. #
    47. # Run time options
    48. #
    49. assume_two_step 0
    50. logging_level 6
    51. path_trace_enabled 0
    52. follow_up_info 0
    53. hybrid_e2e 0
    54. inhibit_multicast_service 0
    55. net_sync_monitor 0
    56. tc_spanning_tree 0
    57. tx_timestamp_timeout 10 (8)
    58. unicast_listen 0
    59. unicast_master_table 0
    60. unicast_req_duration 3600
    61. use_syslog 1
    62. verbose 0
    63. summary_interval 0
    64. kernel_leap 1
    65. check_fup_sync 0
    66. #
    67. # Servo Options
    68. #
    69. pi_proportional_const 0.0
    70. pi_integral_const 0.0
    71. pi_proportional_scale 0.0
    72. pi_proportional_exponent -0.3
    73. pi_proportional_norm_max 0.7
    74. pi_integral_scale 0.0
    75. pi_integral_exponent 0.4
    76. pi_integral_norm_max 0.3
    77. step_threshold 0.0
    78. first_step_threshold 0.00002
    79. max_frequency 900000000
    80. clock_servo pi
    81. sanity_freq_limit 200000000
    82. ntpshm_segment 0
    83. #
    84. # Transport options
    85. #
    86. transportSpecific 0x0
    87. ptp_dst_mac 01:1B:19:00:00:00
    88. p2p_dst_mac 01:80:C2:00:00:0E
    89. udp_ttl 1
    90. udp6_scope 0x0E
    91. uds_address /var/run/ptp4l
    92. #
    93. # Default interface options
    94. #
    95. clock_type OC
    96. network_transport L2
    97. delay_mechanism E2E
    98. time_stamping hardware
    99. tsproc_mode filter
    100. delay_filter moving_median
    101. delay_filter_length 10
    102. egressLatency 0
    103. ingressLatency 0
    104. boundary_clock_jbod 0 (9)
    105. #
    106. # Clock description
    107. #
    108. productDescription ;;
    109. revisionData ;;
    110. manufacturerIdentity 00:00:00
    111. userDescription ;
    112. timeSource 0xA0
    113. ptpSchedulingPolicy: SCHED_OTHER (10)
    114. ptpSchedulingPriority: 65 (11)
    115. ptpClockThreshold: (12)
    116. holdOverTimeout: 5
    117. maxOffsetThreshold: 100
    118. minOffsetThreshold: -100
    119. recommend: (13)
    120. - profile: "profile1" (14)
    121. priority: 0 (15)
    122. match: (16)
    123. - nodeLabel: "node-role.kubernetes.io/worker" (17)
    124. nodeName: "compute-0.example.com" (18)
    1The name of the PtpConfig CR.
    2Specify an array of one or more profile objects.
    3Specify a unique name for the profile object.
    4Specify the network interface to be used by the ptp4l service, for example ens787f1.
    5Specify system config options for the ptp4l service, for example -2 to select the IEEE 802.3 network transport. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended. Append —summary_interval -4 to use PTP fast events with this interface.
    6Specify system config options for the phc2sys service. If this field is empty the PTP Operator does not start the phc2sys service. For Intel Columbiaville 800 Series NICs, set phc2sysOpts options to -a -r -m -n 24 -N 8 -R 16.
    7Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file. To use the default configuration, leave the field empty.
    8For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 50.
    9For Intel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.
    10Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.
    11Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes. Required if SCHED_FIFO is set for ptpSchedulingPolicy.
    12Optional. If ptpClockThreshold stanza is not present, default values are used for ptpClockThreshold fields. Stanza shows default ptpClockThreshold values.
    13Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.
    14Specify the profile object name defined in the profile section.
    15Set priority to 0 for ordinary clock.
    16Specify match rules with nodeLabel or nodeName.
    17Specify nodeLabel with the key of node.Labels from the node object by using the oc get nodes —show-labels command.
    18Specify nodeName with node.Name from the node object by using the oc get nodes command.
  2. Create the PtpConfig CR by running the following command:

    1. $ oc create -f ordinary-clock-ptp-config.yaml

Verification

  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      1. $ oc get pods -n openshift-ptp -o wide

      Example output

      1. NAME READY STATUS RESTARTS AGE IP NODE
      2. linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-0.example.com
      3. linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-1.example.com
      4. ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-plane-1.example.com
    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      1. $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

      Example output

      1. I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      2. I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      3. I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      4. I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      5. I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
      6. I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s --summary_interval -4
      7. I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      8. I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig custom resource (CR) object.

Use the following example PtpConfig CR as the basis to linuxptp services as boundary clock for your particular hardware and environment. This example CR also configures PTP fast events by setting appropriate values for ptp4lOpts, ptp4lConf and ptpClockThreshold. ptpClockThreshold is used only when events are enabled.

Prerequisites

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure

  1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-config.yaml file.

    1. apiVersion: ptp.openshift.io/v1
    2. kind: PtpConfig
    3. metadata:
    4. name: boundary-clock-ptp-config (1)
    5. namespace: openshift-ptp
    6. spec:
    7. profile: (2)
    8. - name: "<profile_name>" (3)
    9. ptp4lOpts: "-2 --summary_interval -4" (4)
    10. ptp4lConf: | (5)
    11. [ens1f0] (6)
    12. masterOnly 0
    13. [ens1f3] (7)
    14. masterOnly 1
    15. [global]
    16. #
    17. # Default Data Set
    18. #
    19. twoStepFlag 1
    20. #slaveOnly 1
    21. priority1 128
    22. priority2 128
    23. domainNumber 24
    24. #utc_offset 37
    25. clockClass 248
    26. clockAccuracy 0xFE
    27. offsetScaledLogVariance 0xFFFF
    28. free_running 0
    29. freq_est_interval 1
    30. dscp_event 0
    31. dscp_general 0
    32. dataset_comparison G.8275.x
    33. G.8275.defaultDS.localPriority 128
    34. #
    35. # Port Data Set
    36. #
    37. logAnnounceInterval -3
    38. logSyncInterval -4
    39. logMinDelayReqInterval -4
    40. logMinPdelayReqInterval -4
    41. announceReceiptTimeout 3
    42. syncReceiptTimeout 0
    43. delayAsymmetry 0
    44. fault_reset_interval 4
    45. neighborPropDelayThresh 20000000
    46. masterOnly 0
    47. G.8275.portDS.localPriority 128
    48. #
    49. # Runtime options
    50. #
    51. assume_two_step 0
    52. logging_level 6
    53. path_trace_enabled 0
    54. follow_up_info 0
    55. hybrid_e2e 0
    56. inhibit_multicast_service 0
    57. net_sync_monitor 0
    58. tc_spanning_tree 0
    59. tx_timestamp_timeout 10 (8)
    60. unicast_listen 0
    61. unicast_master_table 0
    62. unicast_req_duration 3600
    63. use_syslog 1
    64. verbose 0
    65. summary_interval -4
    66. kernel_leap 1
    67. check_fup_sync 0
    68. #
    69. # Servo Options
    70. #
    71. pi_proportional_const 0.0
    72. pi_integral_const 0.0
    73. pi_proportional_scale 0.0
    74. pi_proportional_exponent -0.3
    75. pi_proportional_norm_max 0.7
    76. pi_integral_scale 0.0
    77. pi_integral_exponent 0.4
    78. pi_integral_norm_max 0.3
    79. step_threshold 0
    80. first_step_threshold 0.00002
    81. max_frequency 900000000
    82. clock_servo pi
    83. sanity_freq_limit 200000000
    84. ntpshm_segment 0
    85. #
    86. # Transport options
    87. #
    88. transportSpecific 0x0
    89. ptp_dst_mac 01:1B:19:00:00:00
    90. p2p_dst_mac 01:80:C2:00:00:0E
    91. udp_ttl 1
    92. udp6_scope 0x0E
    93. uds_address /var/run/ptp4l
    94. #
    95. # Default interface options
    96. #
    97. clock_type BC
    98. network_transport L2
    99. delay_mechanism E2E
    100. time_stamping hardware
    101. tsproc_mode filter
    102. delay_filter moving_median
    103. delay_filter_length 10
    104. egressLatency 0
    105. ingressLatency 0
    106. boundary_clock_jbod 0 (9)
    107. #
    108. # Clock description
    109. #
    110. productDescription ;;
    111. revisionData ;;
    112. manufacturerIdentity 00:00:00
    113. userDescription ;
    114. timeSource 0xA0
    115. phc2sysOpts: "-a -r -n 24" (10)
    116. ptpSchedulingPolicy: SCHED_OTHER (11)
    117. ptpSchedulingPriority: 65 (12)
    118. ptpClockThreshold: (13)
    119. holdOverTimeout: 5
    120. maxOffsetThreshold: 100
    121. minOffsetThreshold: -100
    122. recommend: (14)
    123. - profile: "<profile_name>" (15)
    124. priority: 10 (16)
    125. match: (17)
    126. - nodeLabel: "<node_label>" (18)
    127. nodeName: "<node_name>" (19)
    1The name of the PtpConfig CR.
    2Specify an array of one or more profile objects.
    3Specify the name of a profile object which uniquely identifies a profile object.
    4Specify system config options for the ptp4l service. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended.
    5Specify the needed configuration to start ptp4l as boundary clock. For example, ens1f0 synchronizes from a grandmaster clock and ens1f3 synchronizes connected devices.
    6The interface that receives the synchronization clock.
    7The interface that sends the synchronization clock.
    8For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 50.
    9For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod is set to 0.
    10Specify system config options for the phc2sys service. If this field is empty the PTP Operator does not start the phc2sys service.
    11Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.
    12Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes. Required if SCHED_FIFO is set for ptpSchedulingPolicy.
    13Optional. If ptpClockThreshold stanza is not present, default values are used for ptpClockThreshold fields. Stanza shows default ptpClockThreshold values.
    14Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.
    15Specify the profile object name defined in the profile section.
    16Specify the priority with an integer value between 0 and 99. A larger number gets lower priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with multiple profiles according to rules defined in the match field, the profile with the higher priority is applied to that node.
    17Specify match rules with nodeLabel or nodeName.
    18Specify nodeLabel with the key of node.Labels from the node object by using the oc get nodes —show-labels command. For example: node-role.kubernetes.io/worker.
    19Specify nodeName with node.Name from the node object by using the oc get nodes command. For example: node-role.kubernetes.io/worker. For example: compute-0.example.com.
  2. Create the CR by running the following command:

    1. $ oc create -f boundary-clock-ptp-config.yaml

Verification

  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      1. $ oc get pods -n openshift-ptp -o wide

      Example output

      1. NAME READY STATUS RESTARTS AGE IP NODE
      2. linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-0.example.com
      3. linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-1.example.com
      4. ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-plane-1.example.com
    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      1. $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

      Example output

      1. I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      2. I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      3. I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      4. I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      5. I1115 09:41:17.117616 4143292 daemon.go:102] Interface:
      6. I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 --summary_interval -4
      7. I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      8. I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

Configuring linuxptp services as boundary clocks for dual NIC hardware

Precision Time Protocol (PTP) hardware with dual NIC configured as boundary clocks is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clocks for dual NIC hardware by creating a PtpConfig custom resource (CR) object for each NIC.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate ptp4l instances for each NIC feeding the downstream clocks.

Prerequisites

  • Install the OpenShift CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator.

Procedure

  1. Create two separate PtpConfig CRs, one for each NIC, using the reference CR in “Configuring linuxptp services as a boundary clock” as the basis for each CR. For example:

    1. Create boundary-clock-ptp-config-nic1.yaml, specifying values for phc2sysOpts:

      1. apiVersion: ptp.openshift.io/v1
      2. kind: PtpConfig
      3. metadata:
      4. name: boundary-clock-ptp-config-nic1
      5. namespace: openshift-ptp
      6. spec:
      7. profile:
      8. - name: "profile1"
      9. ptp4lOpts: "-2 --summary_interval -4"
      10. ptp4lConf: | (1)
      11. [ens5f1]
      12. masterOnly 1
      13. [ens5f0]
      14. masterOnly 0
      15. ...
      16. phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16"
      1Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0 synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.
    2. Create boundary-clock-ptp-config-nic2.yaml, removing the phc2sysOpts field altogether to disable the phc2sys service for the second NIC:

      1. apiVersion: ptp.openshift.io/v1
      2. kind: PtpConfig
      3. metadata:
      4. name: boundary-clock-ptp-config-nic2
      5. namespace: openshift-ptp
      6. spec:
      7. profile:
      8. - name: "profile2"
      9. ptp4lOpts: "-2 --summary_interval -4"
      10. ptp4lConf: | (1)
      11. [ens7f1]
      12. masterOnly 1
      13. [ens7f0]
      14. masterOnly 0
      15. ...
      1Specify the required interfaces to start ptp4l as a boundary clock on the second NIC.

      You must completely remove the phc2sysOpts field from the second PtpConfig CR to disable the phc2sys service on the second NIC.

  2. Create the dual NIC PtpConfig CRs by running the following commands:

    1. Create the CR that configures PTP for the first NIC:

      1. $ oc create -f boundary-clock-ptp-config-nic1.yaml
    2. Create the CR that configures PTP for the second NIC:

      1. $ oc create -f boundary-clock-ptp-config-nic2.yaml

Verification

  • Check that the PTP Operator has applied the PtpConfig CRs for both NICs. Examine the logs for the linuxptp daemon corresponding to the node that has the dual NIC hardware installed. For example, run the following command:

    1. $ oc logs linuxptp-daemon-cvgr6 -n openshift-ptp -c linuxptp-daemon-container

    Example output

    1. ptp4l[80828.335]: [ptp4l.1.config] master offset 5 s2 freq -5727 path delay 519
    2. ptp4l[80828.343]: [ptp4l.0.config] master offset -5 s2 freq -10607 path delay 533
    3. phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1 s2 freq -87239 delay 539

Intel Columbiaville E800 series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration in order to use Intel Columbiaville E800 series NICs as ordinary clocks. Make the changes in a PtpConfig custom resource (CR) that you apply to the cluster.

Table 1. Recommended PTP settings for Intel Columbiaville NIC
PTP configurationRecommended setting

phc2sysOpts

-a -r -m -n 24 -N 8 -R 16

tx_timestamp_timeout

50

boundary_clock_jbod

0

Additional resources

Configuring FIFO priority scheduling for PTP hardware

In telco or other deployment configurations that require low latency performance, PTP daemon threads run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP threads run with the SCHED_OTHER policy. Under high load, these threads might not get the scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR, then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the ptpSchedulingPriority field of the PtpConfig CR.

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing latency errors.

Procedure

  1. Edit the PtpConfig CR profile:

    1. $ oc edit PtpConfig -n openshift-ptp
  2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

    1. apiVersion: ptp.openshift.io/v1
    2. kind: PtpConfig
    3. metadata:
    4. name: <ptp_config_name>
    5. namespace: openshift-ptp
    6. ...
    7. spec:
    8. profile:
    9. - name: "profile1"
    10. ...
    11. ptpSchedulingPolicy: SCHED_FIFO (1)
    12. ptpSchedulingPriority: 65 (2)
    1Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that support FIFO scheduling.
    2Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and phc2sys processes.
  3. Save and exit to apply the changes to the PtpConfig CR.

Verification

  1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR has been applied:

    1. $ oc get pods -n openshift-ptp -o wide

    Example output

    1. NAME READY STATUS RESTARTS AGE IP NODE
    2. linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-0.example.com
    3. linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-1.example.com
    4. ptp-operator-3r4dcvf7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-1.example.com
  2. Check that the ptp4l process is running with the updated chrt FIFO priority:

    1. $ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt

    Example output

    1. I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f /var/run/ptp4l.0.config -2 --summary_interval -4 -m

Troubleshooting common PTP Operator issues

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

  • Install the OKD CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

  1. Check the Operator and operands are successfully deployed in the cluster for the configured nodes.

    1. $ oc get pods -n openshift-ptp -o wide

    Example output

    1. NAME READY STATUS RESTARTS AGE IP NODE
    2. linuxptp-daemon-lmvgn 3/3 Running 0 4d17h 10.1.196.24 compute-0.example.com
    3. linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-1.example.com
    4. ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-plane-1.example.com

    When the PTP fast event bus is enabled, the number of ready linuxptp-daemon pods is 3/3. If the PTP fast event bus is not enabled, 2/2 is displayed.

  2. Check that supported hardware is found in the cluster.

    1. $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

    Example output

    1. NAME AGE
    2. control-plane-0.example.com 10d
    3. control-plane-1.example.com 10d
    4. compute-0.example.com 10d
    5. compute-1.example.com 10d
    6. compute-2.example.com 10d
  3. Check the available PTP network interfaces for a node:

    1. $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

    where:

    <node_name>

    Specifies the node you want to query, for example, compute-0.example.com.

    Example output

    1. apiVersion: ptp.openshift.io/v1
    2. kind: NodePtpDevice
    3. metadata:
    4. creationTimestamp: "2021-09-14T16:52:33Z"
    5. generation: 1
    6. name: compute-0.example.com
    7. namespace: openshift-ptp
    8. resourceVersion: "177400"
    9. uid: 30413db0-4d8d-46da-9bef-737bacd548fd
    10. spec: {}
    11. status:
    12. devices:
    13. - name: eno1
    14. - name: eno2
    15. - name: eno3
    16. - name: eno4
    17. - name: enp5s0f0
    18. - name: enp5s0f1
  4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the linuxptp-daemon pod for the corresponding node.

    1. Get the name of the linuxptp-daemon pod and corresponding node you want to troubleshoot by running the following command:

      1. $ oc get pods -n openshift-ptp -o wide

      Example output

      1. NAME READY STATUS RESTARTS AGE IP NODE
      2. linuxptp-daemon-lmvgn 3/3 Running 0 4d17h 10.1.196.24 compute-0.example.com
      3. linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-1.example.com
      4. ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-plane-1.example.com
    2. Remote shell into the required linuxptp-daemon container:

      1. $ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

      where:

      <linux_daemon_container>

      is the container you want to diagnose, for example linuxptp-daemon-lmvgn.

    3. In the remote shell connection to the linuxptp-daemon container, use the PTP Management Client (pmc) tool to diagnose the network interface. Run the following pmc command to check the sync status of the PTP device, for example ptp4l.

      1. # pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

      Example output when the node is successfully synced to the primary clock

      1. sending: GET PORT_DATA_SET
      2. 40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
      3. portIdentity 40a6b7.fffe.166ef0-1
      4. portState SLAVE
      5. logMinDelayReqInterval -4
      6. peerMeanPathDelay 0
      7. logAnnounceInterval -3
      8. announceReceiptTimeout 3
      9. logSyncInterval -4
      10. delayMechanism 1
      11. logMinPdelayReqInterval -4
      12. versionNumber 2

PTP hardware fast event notifications framework

About PTP and clock synchronization error events

Cloud native applications such as virtual RAN require access to notifications about hardware timing events that are critical to the functioning of the overall network. Fast event notifications are early warning signals about impending and real-time Precision Time Protocol (PTP) clock synchronization events. PTP clock synchronization errors can negatively affect the performance and reliability of your low latency application, for example, a vRAN application running in a distributed unit (DU).

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster nodes to communicate PTP clock sync status to the vRAN application running in the DU.

Event notifications are available to RAN applications running on the same DU node. A publish/subscribe REST API passes events notifications to the messaging bus. Publish/subscribe messaging, or pub/sub messaging, is an asynchronous service to service communication architecture where any message published to a topic is immediately received by all the subscribers to the topic.

Fast event notifications are generated by the PTP Operator in OKD for every PTP-capable network interface. The events are made available using a cloud-event-proxy sidecar container over an Advanced Message Queuing Protocol (AMQP) message bus. The AMQP message bus is provided by the AMQ Interconnect Operator.

PTP fast event notifications are available for network interfaces configured to use PTP ordinary clocks or PTP boundary clocks.

About the PTP fast event notifications framework

You can subscribe distributed unit (DU) applications to Precision Time Protocol (PTP) fast events notifications that are generated by OKD with the PTP Operator and cloud-event-proxy sidecar container. You enable the cloud-event-proxy sidecar container by setting the enableEventPublisher field to true in the ptpOperatorConfig custom resource (CR) and specifying an Advanced Message Queuing Protocol (AMQP) transportHost address. PTP fast events use an AMQP event notification bus provided by the AMQ Interconnect Operator. AMQ Interconnect is a component of Red Hat AMQ, a messaging router that provides flexible routing of messages between any AMQP-enabled endpoints. An overview of the PTP fast events framework is below:

Overview of PTP fast events

Figure 1. Overview of PTP fast events

The cloud-event-proxy sidecar container can access the same resources as the primary vRAN application without using any of the resources of the primary application and with no significant latency.

The fast events notifications framework uses a REST API for communication and is based on the O-RAN REST API specification. The framework consists of a publisher, subscriber, and an AMQ messaging bus to handle communications between the publisher and subscriber applications. The cloud-event-proxy sidecar is a utility container that runs in a pod that is loosely coupled to the main DU application container on the DU node. It provides an event publishing framework that allows you to subscribe DU applications to published PTP events.

DU applications run the cloud-event-proxy container in a sidecar pattern to subscribe to PTP events. The following workflow describes how a DU application uses PTP fast events:

  1. DU application requests a subscription: The DU sends an API request to the cloud-event-proxy sidecar to create a PTP events subscription. The cloud-event-proxy sidecar creates a subscription resource.

  2. cloud-event-proxy sidecar creates the subscription: The event resource is persisted by the cloud-event-proxy sidecar. The cloud-event-proxy sidecar container sends an acknowledgment with an ID and URL location to access the stored subscription resource. The sidecar creates an AMQ messaging listener protocol for the resource specified in the subscription.

  3. DU application receives the PTP event notification: The cloud-event-proxy sidecar container listens to the address specified in the resource qualifier. The DU events consumer processes the message and passes it to the return URL specified in the subscription.

  4. cloud-event-proxy sidecar validates the PTP event and posts it to the DU application: The cloud-event-proxy sidecar receives the event, unwraps the cloud events object to retrieve the data, and fetches the return URL to post the event back to the DU consumer application.

  5. DU application uses the PTP event: The DU application events consumer receives and processes the PTP event.

Installing the AMQ messaging bus

To pass PTP fast event notifications between publisher and subscriber on a node, you must install and configure an AMQ messaging bus to run locally on the node. You do this by installing the AMQ Interconnect Operator for use in the cluster.

Prerequisites

  • Install the OKD CLI (oc).

  • Log in as a user with cluster-admin privileges.

Procedure

Verification

  1. Check that the AMQ Interconnect Operator is available and the required pods are running:

    1. $ oc get pods -n amq-interconnect

    Example output

    1. NAME READY STATUS RESTARTS AGE
    2. amq-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
    3. interconnect-operator-5cb5fc7cc-4v7qm 1/1 Running 0 23h
  2. Check that the required linuxptp-daemon PTP event producer pods are running in the openshift-ptp namespace.

    1. $ oc get pods -n openshift-ptp

    Example output

    1. NAME READY STATUS RESTARTS AGE
    2. linuxptp-daemon-2t78p 3/3 Running 0 12h
    3. linuxptp-daemon-k8n88 3/3 Running 0 12h

Configuring the PTP fast event notifications publisher

To start using PTP fast event notifications for a network interface in your cluster, you must enable the fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites

  • Install the OKD CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install the PTP Operator and AMQ Interconnect Operator.

Procedure

  1. Modify the default PTP Operator config to enable PTP fast events.

    1. Save the following YAML in the ptp-operatorconfig.yaml file:

      1. apiVersion: ptp.openshift.io/v1
      2. kind: PtpOperatorConfig
      3. metadata:
      4. name: default
      5. namespace: openshift-ptp
      6. spec:
      7. daemonNodeSelector:
      8. node-role.kubernetes.io/worker: ""
      9. ptpEventConfig:
      10. enableEventPublisher: true (1)
      11. transportHost: amqp://<instance_name>.<namespace>.svc.cluster.local (2)
      1Set enableEventPublisher to true to enable PTP fast event notifications.
      2Set transportHost to the AMQ router that you configured where <instance_name> and <namespace> correspond to the AMQ Interconnect router instance name and namespace, for example, amqp://amq-interconnect.amq-interconnect.svc.cluster.local
    2. Update the PtpOperatorConfig CR:

      1. $ oc apply -f ptp-operatorconfig.yaml
  2. Create a PtpConfig custom resource (CR) for the PTP enabled interface, and set the required values for ptpClockThreshold and ptp4lOpts. The following YAML illustrates the required values that you must set in the PtpConfig CR:

    1. spec:
    2. profile:
    3. - name: "profile1"
    4. interface: "enp5s0f0"
    5. ptp4lOpts: "-2 -s --summary_interval -4" (1)
    6. phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16"
    7. ptp4lConf: "" (2)
    8. ptpClockThreshold: (3)
    9. holdOverTimeout: 5 (4)
    10. maxOffsetThreshold: 100 (5)
    11. minOffsetThreshold: -100 (6)
    1Append —summary_interval -4 to use PTP fast events.
    2Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file. To use the default configuration, leave the field empty.
    3Optional. If ptpClockThreshold stanza is not present, default values are used for ptpClockThreshold fields. Stanza shows default ptpClockThreshold values.
    4Number of seconds to stay in the clock holdover state. Holdover state is the period between local and master clock synchronizations.
    5Maximum offset value in nanoseconds. Offset is the time difference between the local and master clock.
    6Minimum offset value in nanoseconds.

Additional resources

Subscribing DU applications to PTP events REST API reference

Use the PTP event notifications REST API to subscribe a distributed unit (DU) application to the PTP events that are generated on the parent node.

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp, where <node_name> is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-event-proxy container in the application pod.

Use the following API endpoints to subscribe the cloud-event-consumer DU application to PTP events posted by the cloud-event-proxy container at http://localhost:8089/api/cloudNotifications/v1/ in the DU application pod:

  • /api/cloudNotifications/v1/subscriptions

    • POST: Creates a new subscription

    • GET: Retrieves a list of subscriptions

  • /api/cloudNotifications/v1/subscriptions/<subscription_id>

    • GET: Returns details for the specified subscription ID
  • api/cloudNotifications/v1/subscriptions/status/<subscription_id>

    • PUT: Creates a new status ping request for the specified subscription ID
  • /api/cloudNotifications/v1/health

    • GET: Returns the health status of cloudNotifications API
  • api/cloudNotifications/v1/publishers

    • GET: Returns an array of os-clock-sync-state, ptp-clock-class-change, and lock-state messages for the cluster node

9089 is the default port for the cloud-event-consumer container deployed in the application pod. You can configure a different port for your DU application as required.

api/cloudNotifications/v1/subscriptions

HTTP method

GET api/cloudNotifications/v1/subscriptions

Description

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list of subscriptions.

Example API response

  1. [
  2. {
  3. "id": "75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
  4. "endpointUri": "http://localhost:9089/event",
  5. "uriLocation": "http://localhost:8089/api/cloudNotifications/v1/subscriptions/75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
  6. "resource": "/cluster/node/compute-1.example.com/ptp"
  7. }
  8. ]
HTTP method

POST api/cloudNotifications/v1/subscriptions

Description

Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created status code is returned.

Table 2. Query parameters
ParameterType

subscription

data

Example payload

  1. {
  2. "uriLocation": "http://localhost:8089/api/cloudNotifications/v1/subscriptions",
  3. "resource": "/cluster/node/compute-1.example.com/ptp"
  4. }

api/cloudNotifications/v1/subscriptions/<subscription_id>

HTTP method

GET api/cloudNotifications/v1/subscriptions/<subscription_id>

Description

Returns details for the subscription with ID <subscription_id>

Table 3. Query parameters
ParameterType

<subscription_id>

string

Example API response

  1. {
  2. "id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",
  3. "endpointUri": "http://localhost:9089/event",
  4. "uriLocation":"http://localhost:8089/api/cloudNotifications/v1/subscriptions/48210fb3-45be-4ce0-aa9b-41a0e58730ab",
  5. "resource":"/cluster/node/compute-1.example.com/ptp"
  6. }

api/cloudNotifications/v1/subscriptions/status/<subscription_id>

HTTP method

PUT api/cloudNotifications/v1/subscriptions/status/<subscription_id>

Description

Creates a new status ping request for subscription with ID <subscription_id>. If a subscription is present, the status request is successful and a 202 Accepted status code is returned.

Table 4. Query parameters
ParameterType

<subscription_id>

string

Example API response

  1. {"status":"ping sent"}

api/cloudNotifications/v1/health/

HTTP method

GET api/cloudNotifications/v1/health/

Description

Returns the health status for the cloudNotifications REST API.

Example API response

  1. OK

api/cloudNotifications/v1/publishers

HTTP method

GET api/cloudNotifications/v1/publishers

Description

Returns an array of os-clock-sync-state, ptp-clock-class-change, and lock-state details for the cluster node. The system generates notifications when the relevant equipment state changes.

  • os-clock-sync-state notifications describe the host operating system clock synchronization state. Can be in LOCKED or FREERUN state.

  • ptp-clock-class-change notifications describe the current state of the PTP clock class.

  • lock-state notifications describe the current status of the PTP equipment lock state. Can be in LOCKED, HOLDOVER or FREERUN state.

Example API response

  1. [
  2. {
  3. "id": "0fa415ae-a3cf-4299-876a-589438bacf75",
  4. "endpointUri": "http://localhost:9085/api/cloudNotifications/v1/dummy",
  5. "uriLocation": "http://localhost:9085/api/cloudNotifications/v1/publishers/0fa415ae-a3cf-4299-876a-589438bacf75",
  6. "resource": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state"
  7. },
  8. {
  9. "id": "28cd82df-8436-4f50-bbd9-7a9742828a71",
  10. "endpointUri": "http://localhost:9085/api/cloudNotifications/v1/dummy",
  11. "uriLocation": "http://localhost:9085/api/cloudNotifications/v1/publishers/28cd82df-8436-4f50-bbd9-7a9742828a71",
  12. "resource": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change"
  13. },
  14. {
  15. "id": "44aa480d-7347-48b0-a5b0-e0af01fa9677",
  16. "endpointUri": "http://localhost:9085/api/cloudNotifications/v1/dummy",
  17. "uriLocation": "http://localhost:9085/api/cloudNotifications/v1/publishers/44aa480d-7347-48b0-a5b0-e0af01fa9677",
  18. "resource": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state"
  19. }
  20. ]

You can find os-clock-sync-state, ptp-clock-class-change and lock-state events in the logs for the cloud-event-proxy container. For example:

  1. $ oc logs -f linuxptp-daemon-cvgr6 -n openshift-ptp -c cloud-event-proxy

Example os-clock-sync-state event

  1. {
  2. "id":"c8a784d1-5f4a-4c16-9a81-a3b4313affe5",
  3. "type":"event.sync.sync-status.os-clock-sync-state-change",
  4. "source":"/cluster/compute-1.example.com/ptp/CLOCK_REALTIME",
  5. "dataContentType":"application/json",
  6. "time":"2022-05-06T15:31:23.906277159Z",
  7. "data":{
  8. "version":"v1",
  9. "values":[
  10. {
  11. "resource":"/sync/sync-status/os-clock-sync-state",
  12. "dataType":"notification",
  13. "valueType":"enumeration",
  14. "value":"LOCKED"
  15. },
  16. {
  17. "resource":"/sync/sync-status/os-clock-sync-state",
  18. "dataType":"metric",
  19. "valueType":"decimal64.3",
  20. "value":"-53"
  21. }
  22. ]
  23. }
  24. }

Example ptp-clock-class-change event

  1. {
  2. "id":"69eddb52-1650-4e56-b325-86d44688d02b",
  3. "type":"event.sync.ptp-status.ptp-clock-class-change",
  4. "source":"/cluster/compute-1.example.com/ptp/ens2fx/master",
  5. "dataContentType":"application/json",
  6. "time":"2022-05-06T15:31:23.147100033Z",
  7. "data":{
  8. "version":"v1",
  9. "values":[
  10. {
  11. "resource":"/sync/ptp-status/ptp-clock-class-change",
  12. "dataType":"metric",
  13. "valueType":"decimal64.3",
  14. "value":"135"
  15. }
  16. ]
  17. }
  18. }

Example lock-state event

  1. {
  2. "id":"305ec18b-1472-47b3-aadd-8f37933249a9",
  3. "type":"event.sync.ptp-status.ptp-state-change",
  4. "source":"/cluster/compute-1.example.com/ptp/ens2fx/master",
  5. "dataContentType":"application/json",
  6. "time":"2022-05-06T15:31:23.467684081Z",
  7. "data":{
  8. "version":"v1",
  9. "values":[
  10. {
  11. "resource":"/sync/ptp-status/lock-state",
  12. "dataType":"notification",
  13. "valueType":"enumeration",
  14. "value":"LOCKED"
  15. },
  16. {
  17. "resource":"/sync/ptp-status/lock-state",
  18. "dataType":"metric",
  19. "valueType":"decimal64.3",
  20. "value":"62"
  21. }
  22. ]
  23. }
  24. }

Monitoring PTP fast event metrics using the CLI

You can monitor fast events bus metrics directly from cloud-event-proxy containers using the oc CLI.

PTP fast event notification metrics are also available in the OKD web console.

Prerequisites

  • Install the OKD CLI (oc).

  • Log in as a user with cluster-admin privileges.

  • Install and configure the PTP Operator.

Procedure

  1. Get the list of active linuxptp-daemon pods.

    1. $ oc get pods -n openshift-ptp

    Example output

    1. NAME READY STATUS RESTARTS AGE
    2. linuxptp-daemon-2t78p 3/3 Running 0 8h
    3. linuxptp-daemon-k8n88 3/3 Running 0 8h
  2. Access the metrics for the required cloud-event-proxy container by running the following command:

    1. $ oc exec -it <linuxptp-daemon> -n openshift-ptp -c cloud-event-proxy -- curl 127.0.0.1:9091/metrics

    where:

    <linuxptp-daemon>

    Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

    Example output

    1. # HELP cne_amqp_events_published Metric to get number of events published by the transport
    2. # TYPE cne_amqp_events_published gauge
    3. cne_amqp_events_published{address="/cluster/node/compute-1.example.com/ptp/status",status="success"} 1041
    4. # HELP cne_amqp_events_received Metric to get number of events received by the transport
    5. # TYPE cne_amqp_events_received gauge
    6. cne_amqp_events_received{address="/cluster/node/compute-1.example.com/ptp",status="success"} 1019
    7. # HELP cne_amqp_receiver Metric to get number of receiver created
    8. # TYPE cne_amqp_receiver gauge
    9. cne_amqp_receiver{address="/cluster/node/mock",status="active"} 1
    10. cne_amqp_receiver{address="/cluster/node/compute-1.example.com/ptp",status="active"} 1
    11. cne_amqp_receiver{address="/cluster/node/compute-1.example.com/redfish/event",status="active"}
    12. ...

Monitoring PTP fast event metrics in the web console

You can monitor PTP fast event metrics in the OKD web console by using the pre-configured and self-updating Prometheus monitoring stack.

Prerequisites

  • Install the OKD CLI oc.

  • Log in as a user with cluster-admin privileges.

Procedure

  1. Enter the following command to return the list of available PTP metrics from the cloud-event-proxy sidecar container:

    1. $ oc exec -it <linuxptp_daemon_pod> -n openshift-ptp -c cloud-event-proxy -- curl 127.0.0.1:9091/metrics

    where:

    <linuxptp_daemon_pod>

    Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

  2. Copy the name of the PTP metric you want to query from the list of returned metrics, for example, cne_amqp_events_received.

  3. In the OKD web console, click ObserveMetrics.

  4. Paste the PTP metric into the Expression field, and click Run queries.

Additional resources