- Defining cluster service versions (CSVs)
- Understanding your custom resource definitions (CRDs)
- Understanding your API services
Defining cluster service versions (CSVs)
A cluster service version (CSV), defined by a ClusterServiceVersion
object, is a YAML manifest created from Operator metadata that assists Operator Lifecycle Manager (OLM) in running the Operator in a cluster. It is the metadata that accompanies an Operator container image, used to populate user interfaces with information such as its logo, description, and version. It is also a source of technical information that is required to run the Operator, like the RBAC rules it requires and which custom resources (CRs) it manages or depends on.
The Operator SDK includes the CSV generator to generate a CSV for the current Operator project, customized using information contained in YAML manifests and Operator source files.
A CSV-generating command removes the responsibility of Operator authors having in-depth OLM knowledge in order for their Operator to interact with OLM or publish metadata to the Catalog Registry. Further, because the CSV spec will likely change over time as new Kubernetes and OLM features are implemented, the Operator SDK is equipped to easily extend its update system to handle new CSV features going forward.
How CSV generation works
Operator bundle manifests, which include cluster service versions (CSVs), describe how to display, create, and manage an application with Operator Lifecycle Manager (OLM). The CSV generator in the Operator SDK, called by the generate bundle
subcommand, is the first step towards publishing your Operator to a catalog and deploying it with OLM. The subcommand requires certain input manifests to construct a CSV manifest; all inputs are read when the command is invoked, along with a CSV base, to idempotently generate or regenerate a CSV.
Typically, the generate kustomize manifests
subcommand would be run first to generate the input Kustomize bases that are consumed by the generate bundle
subcommand. However, the Operator SDK provides the make bundle
command, which automates several tasks, including running the following subcommands in order:
generate kustomize manifests
generate bundle
bundle validate
Additional resources
- See Bundling an Operator for a full procedure that includes generating a bundle and CSV.
Generated files and resources
The make bundle
command creates the following files and directories in your Operator project:
A bundle manifests directory named
bundle/manifests
that contains aClusterServiceVersion
(CSV) objectA bundle metadata directory named
bundle/metadata
All custom resource definitions (CRDs) in a
config/crd
directoryA Dockerfile
bundle.Dockerfile
The following resources are typically included in a CSV:
Role
Defines Operator permissions within a namespace.
ClusterRole
Defines cluster-wide Operator permissions.
Deployment
Defines how an Operand of an Operator is run in pods.
CustomResourceDefinition (CRD)
Defines custom resources that your Operator reconciles.
Custom resource examples
Examples of resources adhering to the spec of a particular CRD.
Version management
The --version
flag for the generate bundle
subcommand supplies a semantic version for your bundle when creating one for the first time and when upgrading an existing one.
By setting the VERSION
variable in your Makefile
, the --version
flag is automatically invoked using that value when the generate bundle
subcommand is run by the make bundle
command. The CSV version is the same as the Operator version, and a new CSV is generated when upgrading Operator versions.
Manually-defined CSV fields
Many CSV fields cannot be populated using generated, generic manifests that are not specific to Operator SDK. These fields are mostly human-written metadata about the Operator and various custom resource definitions (CRDs).
Operator authors must directly modify their cluster service version (CSV) YAML file, adding personalized data to the following required fields. The Operator SDK gives a warning during CSV generation when a lack of data in any of the required fields is detected.
The following tables detail which manually-defined CSV fields are required and which are optional.
Field | Description |
---|---|
| A unique name for this CSV. Operator version should be included in the name to ensure uniqueness, for example |
| The capability level according to the Operator maturity model. Options include |
| A public name to identify the Operator. |
| A short description of the functionality of the Operator. |
| Keywords describing the Operator. |
| Human or organizational entities maintaining the Operator, with a |
| The provider of the Operator (usually an organization), with a |
| Key-value pairs to be used by Operator internals. |
| Semantic version of the Operator, for example |
| Any CRDs the Operator uses. This field is populated automatically by the Operator SDK if any CRD YAML files are present in
|
Field | Description |
---|---|
| The name of the CSV being replaced by this CSV. |
| URLs (for example, websites and documentation) pertaining to the Operator or application being managed, each with a |
| Selectors by which the Operator can pair resources in a cluster. |
| A base64-encoded icon unique to the Operator, set in a |
| The level of maturity the software has achieved at this version. Options include |
Further details on what data each field above should hold are found in the CSV spec.
Several YAML fields currently requiring user intervention can potentially be parsed from Operator code. |
Additional resources
Operator metadata annotations
Operator developers can manually define certain annotations in the metadata of a cluster service version (CSV) to enable features or highlight capabilities in user interfaces (UIs), such as OperatorHub.
The following table lists Operator metadata annotations that can be manually defined using metadata.annotations
fields.
Field | Description | ||
---|---|---|---|
| Provide custom resource definition (CRD) templates with a minimum set of configuration. Compatible UIs pre-fill this template for users to further customize. | ||
| Specify a single required custom resource that must be created at the time that the Operator is installed. Must include a template that contains a complete YAML definition. | ||
| Set a suggested namespace where the Operator should be deployed. | ||
| Infrastructure features supported by the Operator. Users can view and filter by these features when discovering Operators through OperatorHub in the web console. Valid, case-sensitive values:
| ||
| Free-form array for listing any specific subscriptions that are required to use the Operator. For example, | ||
| Hides CRDs in the UI that are not meant for user manipulation. |
Example use cases
Operator supports disconnected and proxy-aware
operators.openshift.io/infrastructure-features: '["disconnected", "proxy-aware"]'
Operator requires an OKD license
operators.openshift.io/valid-subscription: '["OpenShift Container Platform"]'
Operator requires a 3scale license
operators.openshift.io/valid-subscription: '["3Scale Commercial License", "Red Hat Managed Integration"]'
Operator supports disconnected and proxy-aware, and requires an OKD license
operators.openshift.io/infrastructure-features: '["disconnected", "proxy-aware"]'
operators.openshift.io/valid-subscription: '["OpenShift Container Platform"]'
Additional resources
Enabling your Operator for restricted network environments (disconnected mode)
Enabling your Operator for restricted network environments
As an Operator author, your Operator must meet additional requirements to run properly in a restricted network, or disconnected, environment.
Operator requirements for supporting disconnected mode
Replace hard-coded image references with environment variables.
In the cluster service version (CSV) of your Operator:
List any related images, or other container images that your Operator might require to perform their functions.
Reference all specified images by a digest (SHA) and not by a tag.
All dependencies of your Operator must also support running in a disconnected mode.
Your Operator must not require any off-cluster resources.
Prerequisites
- An Operator project with a CSV. The following procedure uses the Memcached Operator as an example for Go-, Ansible-, and Helm-based projects.
Procedure
Set an environment variable for the additional image references used by the Operator in the
config/manager/manager.yaml
file:Example
config/manager/manager.yaml
file...
spec:
...
spec:
...
containers:
- command:
- /manager
...
env:
- name: <related_image_environment_variable> (1)
value: "<related_image_reference_with_tag>" (2)
1 Define the environment variable, such as RELATED_IMAGE_MEMCACHED
.2 Set the related image reference and tag, such as docker.io/memcached:1.4.36-alpine
.Replace hard-coded image references with environment variables in the relevant file for your Operator project type:
For Go-based Operator projects, add the environment variable to the
controllers/memcached_controller.go
file as shown in the following example:Example
controllers/memcached_controller.go
file// deploymentForMemcached returns a memcached Deployment object
...
Spec: corev1.PodSpec{
Containers: []corev1.Container{{
- Image: "memcached:1.4.36-alpine", (1)
+ Image: os.Getenv("<related_image_environment_variable>"), (2)
Name: "memcached",
Command: []string{"memcached", "-m=64", "-o", "modern", "-v"},
Ports: []corev1.ContainerPort{{
...
1 Delete the image reference and tag. 2 Use the os.Getenv
function to call the<related_image_environment_variable>
.The
os.Getenv
function returns an empty string if a variable is not set. Set the<related_image_environment_variable>
before changing the file.For Ansible-based Operator projects, add the environment variable to the
roles/memcached/tasks/main.yml
file as shown in the following example:Example
roles/memcached/tasks/main.yml
filespec:
containers:
- name: memcached
command:
- memcached
- -m=64
- -o
- modern
- -v
- image: "docker.io/memcached:1.4.36-alpine" (1)
+ image: "{{ lookup('env', '<related_image_environment_variable>') }}" (2)
ports:
- containerPort: 11211
...
1 Delete the image reference and tag. 2 Use the lookup
function to call the<related_image_environment_variable>
.For Helm-based Operator projects, add the
overrideValues
field to thewatches.yaml
file as shown in the following example:Example
watches.yaml
file...
- group: demo.example.com
version: v1alpha1
kind: Memcached
chart: helm-charts/memcached
overrideValues: (1)
relatedImage: ${<related_image_environment_variable>} (2)
1 Add the overrideValues
field.2 Define the overrideValues
field by using the<related_image_environment_variable>
, such asRELATED_IMAGE_MEMCACHED
.Add the value of the
overrideValues
field to thehelm-charts/memchached/values.yaml
file as shown in the following example:Example
helm-charts/memchached/values.yaml
file...
relatedImage: ""
Edit the chart template in the
helm-charts/memcached/templates/deployment.yaml
file as shown in the following example:Example
helm-charts/memcached/templates/deployment.yaml
filecontainers:
- name: {{ .Chart.Name }}
securityContext:
- toYaml {{ .Values.securityContext | nindent 12 }}
image: "{{ .Values.image.pullPolicy }}
env: (1)
- name: related_image (2)
value: "{{ .Values.relatedImage }}" (3)
1 Add the env
field.2 Name the environment variable. 3 Define the value of the environment variable.
Add the
BUNDLE_GEN_FLAGS
variable definition to yourMakefile
with the following changes:Example
Makefile
BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION) $(BUNDLE_METADATA_OPTS)
# USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
# You can enable this value if you would like to use SHA Based Digests
# To enable set flag to true
USE_IMAGE_DIGESTS ?= false
ifeq ($(USE_IMAGE_DIGESTS), true)
BUNDLE_GEN_FLAGS += --use-image-digests
endif
...
- $(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --version $(VERSION) $(BUNDLE_METADATA_OPTS) (1)
+ $(KUSTOMIZE) build config/manifests | operator-sdk generate bundle $(BUNDLE_GEN_FLAGS) (2)
...
1 Delete this line in the Makefile
.2 Replace the line above with this line. To update your Operator image to use a digest (SHA) and not a tag, run the
make bundle
command and setUSE_IMAGE_DIGESTS
totrue
:$ make bundle USE_IMAGE_DIGESTS=true
Add the
disconnected
annotation, which indicates that the Operator works in a disconnected environment:metadata:
annotations:
operators.openshift.io/infrastructure-features: '["disconnected"]'
Operators can be filtered in OperatorHub by this infrastructure feature.
Enabling your Operator for multiple architectures and operating systems
Operator Lifecycle Manager (OLM) assumes that all Operators run on Linux hosts. However, as an Operator author, you can specify whether your Operator supports managing workloads on other architectures, if worker nodes are available in the OKD cluster.
If your Operator supports variants other than AMD64 and Linux, you can add labels to the cluster service version (CSV) that provides the Operator to list the supported variants. Labels indicating supported architectures and operating systems are defined by the following:
labels:
operatorframework.io/arch.<arch>: supported (1)
operatorframework.io/os.<os>: supported (2)
1 | Set <arch> to a supported string. |
2 | Set <os> to a supported string. |
Only the labels on the channel head of the default channel are considered for filtering package manifests by label. This means, for example, that providing an additional architecture for an Operator in the non-default channel is possible, but that architecture is not available for filtering in the |
If a CSV does not include an os
label, it is treated as if it has the following Linux support label by default:
labels:
operatorframework.io/os.linux: supported
If a CSV does not include an arch
label, it is treated as if it has the following AMD64 support label by default:
labels:
operatorframework.io/arch.amd64: supported
If an Operator supports multiple node architectures or operating systems, you can add multiple labels, as well.
Prerequisites
An Operator project with a CSV.
To support listing multiple architectures and operating systems, your Operator image referenced in the CSV must be a manifest list image.
For the Operator to work properly in restricted network, or disconnected, environments, the image referenced must also be specified using a digest (SHA) and not by a tag.
Procedure
Add a label in the
metadata.labels
of your CSV for each supported architecture and operating system that your Operator supports:labels:
operatorframework.io/arch.s390x: supported
operatorframework.io/os.zos: supported
operatorframework.io/os.linux: supported (1)
operatorframework.io/arch.amd64: supported (1)
1 After you add a new architecture or operating system, you must also now include the default os.linux
andarch.amd64
variants explicitly.
Additional resources
- See the Image Manifest V 2, Schema 2 specification for more information on manifest lists.
Architecture and operating system support for Operators
The following strings are supported in Operator Lifecycle Manager (OLM) on OKD when labeling or filtering Operators that support multiple architectures and operating systems:
Architecture | String |
---|---|
AMD64 |
|
64-bit PowerPC little-endian |
|
IBM Z |
|
Operating system | String |
---|---|
Linux |
|
z/OS |
|
Different versions of OKD and other Kubernetes-based distributions might support a different set of architectures and operating systems. |
Setting a suggested namespace
Some Operators must be deployed in a specific namespace, or with ancillary resources in specific namespaces, to work properly. If resolved from a subscription, Operator Lifecycle Manager (OLM) defaults the namespaced resources of an Operator to the namespace of its subscription.
As an Operator author, you can instead express a desired target namespace as part of your cluster service version (CSV) to maintain control over the final namespaces of the resources installed for their Operators. When adding the Operator to a cluster using OperatorHub, this enables the web console to autopopulate the suggested namespace for the cluster administrator during the installation process.
Procedure
In your CSV, set the
operatorframework.io/suggested-namespace
annotation to your suggested namespace:metadata:
annotations:
operatorframework.io/suggested-namespace: <namespace> (1)
1 Set your suggested namespace.
Enabling Operator conditions
Operator Lifecycle Manager (OLM) provides Operators with a channel to communicate complex states that influence OLM behavior while managing the Operator. By default, OLM creates an OperatorCondition
custom resource definition (CRD) when it installs an Operator. Based on the conditions set in the OperatorCondition
custom resource (CR), the behavior of OLM changes accordingly.
To support Operator conditions, an Operator must be able to read the OperatorCondition
CR created by OLM and have the ability to:
Get the specific condition.
Set the status of a specific condition.
This can be accomplished by using the operator-lib library. An Operator author can provide a controller-runtime client in their Operator for the library to access the OperatorCondition
CR owned by the Operator in the cluster.
The library provides a generic Conditions
interface, which has the following methods to Get
and Set
a conditionType
in the OperatorCondition
CR:
Get
To get the specific condition, the library uses the client.Get
function from controller-runtime
, which requires an ObjectKey
of type types.NamespacedName
present in conditionAccessor
.
Set
To update the status of the specific condition, the library uses the client.Update
function from controller-runtime
. An error occurs if the conditionType
is not present in the CRD.
The Operator is allowed to modify only the status
subresource of the CR. Operators can either delete or update the status.conditions
array to include the condition. For more details on the format and description of the fields present in the conditions, see the upstream Condition GoDocs.
Operator SDK v1.10.1 supports |
Prerequisites
- An Operator project generated using the Operator SDK.
Procedure
To enable Operator conditions in your Operator project:
In the
go.mod
file of your Operator project, addoperator-framework/operator-lib
as a required library:module github.com/example-inc/memcached-operator
go 1.15
require (
k8s.io/apimachinery v0.19.2
k8s.io/client-go v0.19.2
sigs.k8s.io/controller-runtime v0.7.0
operator-framework/operator-lib v0.3.0
)
Write your own constructor in your Operator logic that:
Accepts a
controller-runtime
client.Accepts a
conditionType
.Returns a
Condition
interface to update or add conditions.
Because OLM currently supports the
Upgradeable
condition, you can create an interface that has methods to access theUpgradeable
condition. For example:import (
...
apiv1 "github.com/operator-framework/api/pkg/operators/v1"
)
func NewUpgradeable(cl client.Client) (Condition, error) {
return NewCondition(cl, "apiv1.OperatorUpgradeable")
}
cond, err := NewUpgradeable(cl);
In this example, the
NewUpgradeable
constructor is further used to create a variablecond
of typeCondition
. Thecond
variable would in turn haveGet
andSet
methods, which can be used for handling the OLMUpgradeable
condition.
Additional resources
Defining webhooks
Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM) can manage the lifecycle of these webhooks when they are shipped alongside your Operator.
The cluster service version (CSV) resource of an Operator can include a webhookdefinitions
section to define the following types of webhooks:
Admission webhooks (validating and mutating)
Conversion webhooks
Procedure
Add a
webhookdefinitions
section to thespec
section of the CSV of your Operator and include any webhook definitions using atype
ofValidatingAdmissionWebhook
,MutatingAdmissionWebhook
, orConversionWebhook
. The following example contains all three types of webhooks:CSV containing webhooks
apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
name: webhook-operator.v0.0.1
spec:
customresourcedefinitions:
owned:
- kind: WebhookTest
name: webhooktests.webhook.operators.coreos.io (1)
version: v1
install:
spec:
deployments:
- name: webhook-operator-webhook
...
...
...
strategy: deployment
installModes:
- supported: false
type: OwnNamespace
- supported: false
type: SingleNamespace
- supported: false
type: MultiNamespace
- supported: true
type: AllNamespaces
webhookdefinitions:
- type: ValidatingAdmissionWebhook (2)
admissionReviewVersions:
- v1beta1
- v1
containerPort: 443
targetPort: 4343
deploymentName: webhook-operator-webhook
failurePolicy: Fail
generateName: vwebhooktest.kb.io
rules:
- apiGroups:
- webhook.operators.coreos.io
apiVersions:
- v1
operations:
- CREATE
- UPDATE
resources:
- webhooktests
sideEffects: None
webhookPath: /validate-webhook-operators-coreos-io-v1-webhooktest
- type: MutatingAdmissionWebhook (3)
admissionReviewVersions:
- v1beta1
- v1
containerPort: 443
targetPort: 4343
deploymentName: webhook-operator-webhook
failurePolicy: Fail
generateName: mwebhooktest.kb.io
rules:
- apiGroups:
- webhook.operators.coreos.io
apiVersions:
- v1
operations:
- CREATE
- UPDATE
resources:
- webhooktests
sideEffects: None
webhookPath: /mutate-webhook-operators-coreos-io-v1-webhooktest
- type: ConversionWebhook (4)
admissionReviewVersions:
- v1beta1
- v1
containerPort: 443
targetPort: 4343
deploymentName: webhook-operator-webhook
generateName: cwebhooktest.kb.io
sideEffects: None
webhookPath: /convert
conversionCRDs:
- webhooktests.webhook.operators.coreos.io (5)
...
1 The CRDs targeted by the conversion webhook must exist here. 2 A validating admission webhook. 3 A mutating admission webhook. 4 A conversion webhook. 5 The spec.PreserveUnknownFields
property of each CRD must be set tofalse
ornil
.
Additional resources
Kubernetes documentation:
Webhook considerations for OLM
When deploying an Operator with webhooks using Operator Lifecycle Manager (OLM), you must define the following:
The
type
field must be set to eitherValidatingAdmissionWebhook
,MutatingAdmissionWebhook
, orConversionWebhook
, or the CSV will be placed in a failed phase.The CSV must contain a deployment whose name is equivalent to the value supplied in the
deploymentName
field of thewebhookdefinition
.
When the webhook is created, OLM ensures that the webhook only acts upon namespaces that match the Operator group that the Operator is deployed in.
Certificate authority constraints
OLM is configured to provide each deployment with a single certificate authority (CA). The logic that generates and mounts the CA into the deployment was originally used by the API service lifecycle logic. As a result:
The TLS certificate file is mounted to the deployment at
/apiserver.local.config/certificates/apiserver.crt
.The TLS key file is mounted to the deployment at
/apiserver.local.config/certificates/apiserver.key
.
Admission webhook rules constraints
To prevent an Operator from configuring the cluster into an unrecoverable state, OLM places the CSV in the failed phase if the rules defined in an admission webhook intercept any of the following requests:
Requests that target all groups
Requests that target the
operators.coreos.com
groupRequests that target the
ValidatingWebhookConfigurations
orMutatingWebhookConfigurations
resources
Conversion webhook constraints
OLM places the CSV in the failed phase if a conversion webhook definition does not adhere to the following constraints:
CSVs featuring a conversion webhook can only support the
AllNamespaces
install mode.The CRD targeted by the conversion webhook must have its
spec.preserveUnknownFields
field set tofalse
ornil
.The conversion webhook defined in the CSV must target an owned CRD.
There can only be one conversion webhook on the entire cluster for a given CRD.
Understanding your custom resource definitions (CRDs)
There are two types of custom resource definitions (CRDs) that your Operator can use: ones that are owned by it and ones that it depends on, which are required.
Owned CRDs
The custom resource definitions (CRDs) owned by your Operator are the most important part of your CSV. This establishes the link between your Operator and the required RBAC rules, dependency management, and other Kubernetes concepts.
It is common for your Operator to use multiple CRDs to link together concepts, such as top-level database configuration in one object and a representation of replica sets in another. Each one should be listed out in the CSV file.
Field | Description | Required/optional |
---|---|---|
| The full name of your CRD. | Required |
| The version of that object API. | Required |
| The machine readable name of your CRD. | Required |
| A human readable version of your CRD name, for example | Required |
| A short description of how this CRD is used by the Operator or a description of the functionality provided by the CRD. | Required |
| The API group that this CRD belongs to, for example | Optional |
| Your CRDs own one or more types of Kubernetes objects. These are listed in the It is recommended to only list out the objects that are important to a human, not an exhaustive list of everything you orchestrate. For example, do not list config maps that store internal state that are not meant to be modified by a user. | Optional |
| These descriptors are a way to hint UIs with certain inputs or outputs of your Operator that are most important to an end user. If your CRD contains the name of a secret or config map that the user must provide, you can specify that here. These items are linked and highlighted in compatible UIs. There are three types of descriptors:
All descriptors accept the following fields:
Also see the openshift/console project for more information on Descriptors in general. | Optional |
The following example depicts a MongoDB Standalone
CRD that requires some user input in the form of a secret and config map, and orchestrates services, stateful sets, pods and config maps:
Example owned CRD
- displayName: MongoDB Standalone
group: mongodb.com
kind: MongoDbStandalone
name: mongodbstandalones.mongodb.com
resources:
- kind: Service
name: ''
version: v1
- kind: StatefulSet
name: ''
version: v1beta2
- kind: Pod
name: ''
version: v1
- kind: ConfigMap
name: ''
version: v1
specDescriptors:
- description: Credentials for Ops Manager or Cloud Manager.
displayName: Credentials
path: credentials
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:Secret'
- description: Project this deployment belongs to.
displayName: Project
path: project
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
- description: MongoDB version to be installed.
displayName: Version
path: version
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:label'
statusDescriptors:
- description: The status of each of the pods for the MongoDB cluster.
displayName: Pod Status
path: pods
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
version: v1
description: >-
MongoDB Deployment consisting of only one host. No replication of
data.
Required CRDs
Relying on other required CRDs is completely optional and only exists to reduce the scope of individual Operators and provide a way to compose multiple Operators together to solve an end-to-end use case.
An example of this is an Operator that might set up an application and install an etcd cluster (from an etcd Operator) to use for distributed locking and a Postgres database (from a Postgres Operator) for data storage.
Operator Lifecycle Manager (OLM) checks against the available CRDs and Operators in the cluster to fulfill these requirements. If suitable versions are found, the Operators are started within the desired namespace and a service account created for each Operator to create, watch, and modify the Kubernetes resources required.
Field | Description | Required/optional |
---|---|---|
| The full name of the CRD you require. | Required |
| The version of that object API. | Required |
| The Kubernetes object kind. | Required |
| A human readable version of the CRD. | Required |
| A summary of how the component fits in your larger architecture. | Required |
Example required CRD
required:
- name: etcdclusters.etcd.database.coreos.com
version: v1beta2
kind: EtcdCluster
displayName: etcd Cluster
description: Represents a cluster of etcd nodes.
CRD upgrades
OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has satisfied all of the following backward compatible conditions:
All existing serving versions in the current CRD are present in the new CRD.
All existing instances, or custom resources, that are associated with the serving versions of the CRD are valid when validated against the validation schema of the new CRD.
Adding a new CRD version
Procedure
To add a new version of a CRD to your Operator:
Add a new entry in the CRD resource under the
versions
section of your CSV.For example, if the current CRD has a version
v1alpha1
and you want to add a new versionv1beta1
and mark it as the new storage version, add a new entry forv1beta1
:versions:
- name: v1alpha1
served: true
storage: false
- name: v1beta1 (1)
served: true
storage: true
1 New entry. Ensure the referencing version of the CRD in the
owned
section of your CSV is updated if the CSV intends to use the new version:customresourcedefinitions:
owned:
- name: cluster.example.com
version: v1beta1 (1)
kind: cluster
displayName: Cluster
1 Update the version
.Push the updated CRD and CSV to your bundle.
Deprecating or removing a CRD version
Operator Lifecycle Manager (OLM) does not allow a serving version of a custom resource definition (CRD) to be removed right away. Instead, a deprecated version of the CRD must be first disabled by setting the served
field in the CRD to false
. Then, the non-serving version can be removed on the subsequent CRD upgrade.
Procedure
To deprecate and remove a specific version of a CRD:
Mark the deprecated version as non-serving to indicate this version is no longer in use and may be removed in a subsequent upgrade. For example:
versions:
- name: v1alpha1
served: false (1)
storage: true
1 Set to false
.Switch the
storage
version to a serving version if the version to be deprecated is currently thestorage
version. For example:versions:
- name: v1alpha1
served: false
storage: false (1)
- name: v1beta1
served: true
storage: true (1)
1 Update the storage
fields accordingly.To remove a specific version that is or was the
storage
version from a CRD, that version must be removed from thestoredVersion
in the status of the CRD. OLM will attempt to do this for you if it detects a stored version no longer exists in the new CRD.Upgrade the CRD with the above changes.
In subsequent upgrade cycles, the non-serving version can be removed completely from the CRD. For example:
versions:
- name: v1beta1
served: true
storage: true
Ensure the referencing CRD version in the
owned
section of your CSV is updated accordingly if that version is removed from the CRD.
CRD templates
Users of your Operator must be made aware of which options are required versus optional. You can provide templates for each of your custom resource definitions (CRDs) with a minimum set of configuration as an annotation named alm-examples
. Compatible UIs will pre-fill this template for users to further customize.
The annotation consists of a list of the kind, for example, the CRD name and the corresponding metadata
and spec
of the Kubernetes object.
The following full example provides templates for EtcdCluster
, EtcdBackup
and EtcdRestore
:
metadata:
annotations:
alm-examples: >-
[{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdCluster","metadata":{"name":"example","namespace":"default"},"spec":{"size":3,"version":"3.2.13"}},{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdRestore","metadata":{"name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-cluster"},"backupStorageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdBackup","metadata":{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["<etcd-cluster-endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]
Hiding internal objects
It is common practice for Operators to use custom resource definitions (CRDs) internally to accomplish a task. These objects are not meant for users to manipulate and can be confusing to users of the Operator. For example, a database Operator might have a Replication
CRD that is created whenever a user creates a Database object with replication: true
.
As an Operator author, you can hide any CRDs in the user interface that are not meant for user manipulation by adding the operators.operatorframework.io/internal-objects
annotation to the cluster service version (CSV) of your Operator.
Procedure
Before marking one of your CRDs as internal, ensure that any debugging information or configuration that might be required to manage the application is reflected on the status or
spec
block of your CR, if applicable to your Operator.Add the
operators.operatorframework.io/internal-objects
annotation to the CSV of your Operator to specify any internal objects to hide in the user interface:Internal object annotation
apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
name: my-operator-v1.2.3
annotations:
operators.operatorframework.io/internal-objects: '["my.internal.crd1.io","my.internal.crd2.io"]' (1)
...
1 Set any internal CRDs as an array of strings.
Initializing required custom resources
An Operator might require the user to instantiate a custom resource before the Operator can be fully functional. However, it can be challenging for a user to determine what is required or how to define the resource.
As an Operator developer, you can specify a single required custom resource that must be created at the time that the Operator is installed by adding the operatorframework.io/initialization-resource
annotation to the cluster service version (CSV). The annotation must include a template that contains a complete YAML definition that is required to initialize the resource during installation.
If this annotation is defined, after installing the Operator from the OKD web console, the user is prompted to create the resource using the template provided in the CSV.
Procedure
Add the
operatorframework.io/initialization-resource
annotation to the CSV of your Operator to specify a required custom resource. For example, the following annotation requires the creation of aStorageCluster
resource and provides a full YAML definition:Initialization resource annotation
apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
name: my-operator-v1.2.3
annotations:
operatorframework.io/initialization-resource: |-
{
"apiVersion": "ocs.openshift.io/v1",
"kind": "StorageCluster",
"metadata": {
"name": "example-storagecluster"
},
"spec": {
"manageNodes": false,
"monPVCTemplate": {
"spec": {
"accessModes": [
"ReadWriteOnce"
],
"resources": {
"requests": {
"storage": "10Gi"
}
},
"storageClassName": "gp2"
}
},
"storageDeviceSets": [
{
"count": 3,
"dataPVCTemplate": {
"spec": {
"accessModes": [
"ReadWriteOnce"
],
"resources": {
"requests": {
"storage": "1Ti"
}
},
"storageClassName": "gp2",
"volumeMode": "Block"
}
},
"name": "example-deviceset",
"placement": {},
"portable": true,
"resources": {}
}
]
}
}
...
Understanding your API services
As with CRDs, there are two types of API services that your Operator may use: owned and required.
Owned API services
When a CSV owns an API service, it is responsible for describing the deployment of the extension api-server
that backs it and the group/version/kind (GVK) it provides.
An API service is uniquely identified by the group/version it provides and can be listed multiple times to denote the different kinds it is expected to provide.
Field | Description | Required/optional |
---|---|---|
| Group that the API service provides, for example | Required |
| Version of the API service, for example | Required |
| A kind that the API service is expected to provide. | Required |
| The plural name for the API service provided. | Required |
| Name of the deployment defined by your CSV that corresponds to your API service (required for owned API services). During the CSV pending phase, the OLM Operator searches the | Required |
| A human readable version of your API service name, for example | Required |
| A short description of how this API service is used by the Operator or a description of the functionality provided by the API service. | Required |
| Your API services own one or more types of Kubernetes objects. These are listed in the resources section to inform your users of the objects they might need to troubleshoot or how to connect to the application, such as the service or ingress rule that exposes a database. It is recommended to only list out the objects that are important to a human, not an exhaustive list of everything you orchestrate. For example, do not list config maps that store internal state that are not meant to be modified by a user. | Optional |
| Essentially the same as for owned CRDs. | Optional |
API service resource creation
Operator Lifecycle Manager (OLM) is responsible for creating or replacing the service and API service resources for each unique owned API service:
Service pod selectors are copied from the CSV deployment matching the
DeploymentName
field of the API service description.A new CA key/certificate pair is generated for each installation and the base64-encoded CA bundle is embedded in the respective API service resource.
API service serving certificates
OLM handles generating a serving key/certificate pair whenever an owned API service is being installed. The serving certificate has a common name (CN) containing the hostname of the generated Service
resource and is signed by the private key of the CA bundle embedded in the corresponding API service resource.
The certificate is stored as a type kubernetes.io/tls
secret in the deployment namespace, and a volume named apiservice-cert
is automatically appended to the volumes section of the deployment in the CSV matching the DeploymentName
field of the API service description.
If one does not already exist, a volume mount with a matching name is also appended to all containers of that deployment. This allows users to define a volume mount with the expected name to accommodate any custom path requirements. The path of the generated volume mount defaults to /apiserver.local.config/certificates
and any existing volume mounts with the same path are replaced.
Required API services
OLM ensures all required CSVs have an API service that is available and all expected GVKs are discoverable before attempting installation. This allows a CSV to rely on specific kinds provided by API services it does not own.
Field | Description | Required/optional |
---|---|---|
| Group that the API service provides, for example | Required |
| Version of the API service, for example | Required |
| A kind that the API service is expected to provide. | Required |
| A human readable version of your API service name, for example | Required |
| A short description of how this API service is used by the Operator or a description of the functionality provided by the API service. | Required |