子查询相关改写

    优化器对于子查询一般使用嵌套执行的方式,也就是父查询每生成一行数据后,都需要执行一次子查询,使用这种方式需要多次执行子查询,执行效率很低,对于子查询的优化,一般会使用改写先转换为连接操作,可大大提高执行效率,主要好处有:

    • 可避免子查询多次执行

    • 优化器可根据统计信息选择更优的连接顺序和连接方法

    • 子查询的连接条件、过滤条件改写为父查询的条件后,优化器可以进行进一步优化,比如条件下压等。

    视图合并

    视图合并是指将代表一个视图的子查询合并到包含该视图的查询中,视图合并后,有助于优化器增加连接顺序的选择、访问路径的选择以及进一步做其他改写操作,从而选择更优的执行计划。OceanBase支持对SPJ(select-project-join)的视图进行视图合并。如下示例中,SQL_A可改写为SQL_B,

    1. create table t1 (c1 int, c2 int);
    2. create table t2 (c1 int primary key, c2 int);
    3. create table t3 (c1 int primary key, c2 int);
    4. SQL_A: select t1.c1, v.c1
    5. from t1, (select t2.c1, t3.c2
    6. from t2, t3
    7. where t2.c1 = t3.c1) v
    8. where t1.c2 = v.c2;
    9. <==>
    10. SQL_B: select t1.c1, t2.c1
    11. from t1, t2, t3
    12. where t2.c1 = t3.c1 and t1.c2 = t3.c2;

    如果SQL_A不进行改写, 则其连接顺序有以下几种:

    • t1, v(t2,t3)

    • t1, v(t3,t2)

    • v(t2,t3), t1

    • v(t3,t2), t1进行视图合并改写后, 可选择的连接顺序有:

    • t1, t2, t3

    • t1, t3, t2

    • t2, t1, t3

    • t2, t3, t1

    • t3, t1, t2

    • t3, t2, t1可以看出,进行view merge后,连接顺序可选择空间增加,对于复杂查询,视图合并后,对路径的选择和可改写的空间均会增大,从而使得优化器可生成更优的计划。

    子查询展开

    子查询展开是指将where条件中子查询提升到父查询中,并作为连接条件与父查询并列进行展开。转换后子查询将不存在,外层父查询中会变成多表连接。好处是优化器在进行路径选择,连接方法和连接排序是都会考虑到子查询中的表, 从而可以获得更优的执行计划, 一般涉及的子查询表达式有not in、in、not exist、exist、any、all;

    • 改写条件当生成的连接语句能返回与原始语句相同的行

    • 展开为半连接(SEMI JOIN / ANTI JOIN)如下示例中,t2.c2不具有唯一性,改为semi join,该语句改写后执行计划为:

    1. create table t1 (c1 int, c2 int);
    2. create table t2 (c1 int primary key, c2 int);
    3. explain select * from t1 where t1.c1 in (select t2.c2 from t2)\G;
    4. *************************** 1. row ***************************
    5. Query Plan: =======================================
    6. |ID|OPERATOR |NAME|EST. ROWS|COST|
    7. ---------------------------------------
    8. |0 |HASH SEMI JOIN| |495 |3931|
    9. |1 | TABLE SCAN |t1 |1000 |499 |
    10. |2 | TABLE SCAN |t2 |1000 |433 |
    11. =======================================
    12. Outputs & filters:
    13. -------------------------------------
    14. 0 - output([t1.c1], [t1.c2]), filter(nil),
    15. equal_conds([t1.c1 = t2.c2]), other_conds(nil)
    16. 1 - output([t1.c1], [t1.c2]), filter(nil),
    17. access([t1.c1], [t1.c2]), partitions(p0)
    18. 2 - output([t2.c2]), filter(nil),
    19. access([t2.c2]), partitions(p0)

    将上面子查询前面操作符改为not in后,可改写为anti join, 具体计划如下:

    1. explain select * from t1 where t1.c1 not in (select t2.c2 from t2)\G;
    2. *************************** 1. row ***************************
    3. Query Plan: ================================================
    4. |ID|OPERATOR |NAME|EST. ROWS|COST |
    5. ------------------------------------------------
    6. |0 |NESTED-LOOP ANTI JOIN| |0 |520245|
    7. |1 | TABLE SCAN |t1 |1000 |499 |
    8. |2 | TABLE SCAN |t2 |22 |517 |
    9. ================================================
    10. Outputs & filters:
    11. -------------------------------------
    12. 0 - output([t1.c1], [t1.c2]), filter(nil),
    13. conds(nil), nl_params_([t1.c1], [(T_OP_IS, t1.c1, NULL, 0)])
    14. 1 - output([t1.c1], [t1.c2], [(T_OP_IS, t1.c1, NULL, 0)]), filter(nil),
    15. access([t1.c1], [t1.c2]), partitions(p0)
    16. 2 - output([t2.c2]), filter([(T_OP_OR, ? = t2.c2, ?, (T_OP_IS, t2.c2, NULL, 0))]),
    17. access([t2.c2]), partitions(p0)
    • 子查询展开为内连接将上面示例SQL_A中如果将t2.c2改为t2.c1,由于t2.c1 为主键,子查询输出具有唯一性,此时可以直接转换为内连接:
    1. SQL_A: select * from t1 where t1.c1 in (select t2.c1 from t2);
    2. <==>
    3. SQL_B: select t1.* from t1, t2 where t.c1 = t2.c1;

    以上SQL_A改写后计划如下:

    1. explain select * from t1 where t1.c1 in (select t2.c1 from t2)\G;
    2. *************************** 1. row ***************************
    3. Query Plan: ====================================
    4. |ID|OPERATOR |NAME|EST. ROWS|COST|
    5. ------------------------------------
    6. |0 |HASH JOIN | |1980 |3725|
    7. |1 | TABLE SCAN|t2 |1000 |411 |
    8. |2 | TABLE SCAN|t1 |1000 |499 |
    9. ====================================
    10. Outputs & filters:
    11. -------------------------------------
    12. 0 - output([t1.c1], [t1.c2]), filter(nil),
    13. equal_conds([t1.c1 = t2.c1]), other_conds(nil)
    14. 1 - output([t2.c1]), filter(nil),
    15. access([t2.c1]), partitions(p0)
    16. 2 - output([t1.c1], [t1.c2]), filter(nil),
    17. access([t1.c1], [t1.c2]), partitions(p0)

    对于not in、in、not exist、exist、any、all都可以对应做以上类似的改写操作;

    any/all使用MAX/MIN改写

    对于any/all的子查询, 如果子查询中没有group by子句、聚集函数以及having时, 则以下这些表达式可以使用聚集函数MIN/MAX进行等价转换, 其中col_item为单独列且有非NULL属性:

    1. val > ALL(SELECT col_item ...) <==> val > ALL(SELECT MAX(col_item) ...);
    2. val >= ALL(SELECT col_item ...) <==> val >= ALL(SELECT MAX(col_item) ...);
    3. val < ALL(SELECT col_item ...) <==> val < ALL(SELECT MIN(col_item) ...);
    4. val <= ALL(SELECT col_item ...) <==> val <= ALL(SELECT MIN(col_item) ...);
    5. val > ANY(SELECT col_item ...) <==> val > ANY(SELECT MIN(col_item) ...);
    6. val >= ANY(SELECT col_item ...) <==> val >= ANY(SELECT MIN(col_item) ...);
    7. val < ANY(SELECT col_item ...) <==> val < ANY(SELECT MAX(col_item) ...);
    8. val <= ANY(SELECT col_item ...) <==> val <= ANY(SELECT MAX(col_item) ...);

    将子查询更改为含有max/min的子查询后,再结合使用MAX/MIN的改写,可减少改写前对内表的多次扫描, 举例如下;

    1. select c1 from t1 where c1 > any(select c1 from t2);
    2. <==>
    3. select c1 from t1 where c1 > any(select min(c1) from t2);

    结合MAX/MIN的改写后, 可利用t2.c1的主键序将limit 1直接下压到table scan,将min值输出,执行计划为:

    1. explain select c1 from t1 where c1 > any(select c1 from t2)\G;
    2. *************************** 1. row ***************************
    3. Query Plan: ===================================================
    4. |ID|OPERATOR |NAME |EST. ROWS|COST|
    5. ---------------------------------------------------
    6. |0 |SUBPLAN FILTER | |1 |73 |
    7. |1 | TABLE SCAN |t1 |1 |37 |
    8. |2 | SCALAR GROUP BY| |1 |37 |
    9. |3 | SUBPLAN SCAN |subquery_table|1 |37 |
    10. |4 | TABLE SCAN |t2 |1 |36 |
    11. ===================================================
    12. Outputs & filters:
    13. -------------------------------------
    14. 0 - output([t1.c1]), filter([t1.c1 > ANY(subquery(1))]),
    15. exec_params_(nil), onetime_exprs_(nil), init_plan_idxs_([1])
    16. 1 - output([t1.c1]), filter(nil),
    17. access([t1.c1]), partitions(p0)
    18. 2 - output([T_FUN_MIN(subquery_table.c1)]), filter(nil),
    19. group(nil), agg_func([T_FUN_MIN(subquery_table.c1)])
    20. 3 - output([subquery_table.c1]), filter(nil),
    21. access([subquery_table.c1])
    22. 4 - output([t2.c1]), filter(nil),
    23. access([t2.c1]), partitions(p0),
    24. limit(1), offset(nil)

    外连接消除

    外连接操作可分为左外连接,右外连接和全外连接, 连接过程中,外连接左右顺序不能变换,这使得优化器对连接顺序的选择受到限制。外连接消除是指将外连接转换成内连接,从而可以提供更多可选择的连接路径,供优化器考虑。

    进行外连接消除,需要存在“空值拒绝条件”,即where条件中,存在当内表生成的值为null时,使得输出为false的条件。例如:

    1. select t1.c1, t2.c2 from t1 left join t2 on t1.c2 = t2.c2

    这是一个外连接,在其输出行中t2.c2可能为null。如果加上一个条件t2.c2 > 5,则通过该条件过滤后,t2.c1输出不可能为NULL, 从而可以将外连接转换为内连接。

    1. select t1.c1, t2.c2 from t1 left join t2 on t1.c2 = t2.c2 where t2.c2 > 5
    2. <==>
    3. select t1.c1, t2.c2 from t1 inner join t2 on t1.c2 = t2.c2 where t2.c2 > 5

    简化条件改写

    having条件消除

    如果查询中没有聚集操操作及group by则having可以合并到where条件中,并将having条件删除, 从而可以将having条件在where条件中同一管理优化,并进行进一步相关优化。

    1. select * from t1, t2 where t1.c1 = t2.c1 having t1.c2 > 1
    2. <==>
    3. select * from t1, t2 where t1.c1 = t2.c1 and t1.c2 > 1

    改写后计划如下, 可以看到t1.c2 > 1条件被下压到了TABLE SCAN层;

    1. explain select * from t1, t2 where t1.c1 = t2.c1 having t1.c2 > 1\G;
    2. *************************** 1. row ***************************
    3. Query Plan: =========================================
    4. |ID|OPERATOR |NAME|EST. ROWS|COST|
    5. -----------------------------------------
    6. |0 |NESTED-LOOP JOIN| |1 |59 |
    7. |1 | TABLE SCAN |t1 |1 |37 |
    8. |2 | TABLE GET |t2 |1 |36 |
    9. =========================================
    10. Outputs & filters:
    11. -------------------------------------
    12. 0 - output([t1.c1], [t1.c2], [t2.c1], [t2.c2]), filter(nil),
    13. conds(nil), nl_params_([t1.c1])
    14. 1 - output([t1.c1], [t1.c2]), filter([t1.c2 > 1]),
    15. access([t1.c1], [t1.c2]), partitions(p0)
    16. 2 - output([t2.c1], [t2.c2]), filter(nil),
    17. access([t2.c1], [t2.c2]), partitions(p0)

    等价关系推导

    等价关系推导是指利用比较操作符的传递性,推倒出新的条件表达式, 从而减少需要处理的行数或者选择到更有效的索引。OceanBase可对等值连接进行推导,比如a = b and a > 1 可以推导出 a = b and a > 1 and b > 1, 如果b上有索引,且b > 1在该索引选择率很低,则可以大大提升访问b列所在表的性能。

    如下举例可以看出, 条件t1.c1 = t2.c2 and t1.c1 > 2,等价推导后为t1.c1 = t2.c2 and t1.c1 > 2 and t2.c2 > 2, 从计划中可以看到t2.c2已下压到TABLE SCAN,且使用t2.c2对应的索引。

    1. create table t1(c1 int primary key, c2 int);
    2. create table t2(c1 int primary key, c2 int, c3 int, key idx_c2(c2));
    3. explain extended_noaddr select t1.c1, t2.c2
    4. from t1, t2
    5. where t1.c1 = t2.c2 and t1.c1 > 2\G;
    6. *************************** 1. row ***************************
    7. Query Plan: ==========================================
    8. |ID|OPERATOR |NAME |EST. ROWS|COST|
    9. ------------------------------------------
    10. |0 |MERGE JOIN | |5 |78 |
    11. |1 | TABLE SCAN|t2(idx_c2)|5 |37 |
    12. |2 | TABLE SCAN|t1 |3 |37 |
    13. ==========================================
    14. Outputs & filters:
    15. -------------------------------------
    16. 0 - output([t1.c1], [t2.c2]), filter(nil),
    17. equal_conds([t1.c1 = t2.c2]), other_conds(nil)
    18. 1 - output([t2.c2]), filter(nil),
    19. access([t2.c2]), partitions(p0),
    20. is_index_back=false,
    21. range_key([t2.c2], [t2.c1]), range(2,MAX ; MAX,MAX),
    22. range_cond([t2.c2 > 2])
    23. 2 - output([t1.c1]), filter(nil),
    24. access([t1.c1]), partitions(p0),
    25. is_index_back=false,
    26. range_key([t1.c1]), range(2 ; MAX),
    27. range_cond([t1.c1 > 2])

    恒真/假消除

    对于如下恒真恒假条件:

    • false and expr = 恒false;

    • true or expr = 恒true;可以将这些恒真恒假条件消除,比如以下SQL, where 0 > 1 and c1 = 3, 由于0 > 1使得and恒假, 所以该SQL不用执行,可直接返回,从而加快查询的执行。

    1. explain extended_noaddr select * from t1 where 0 > 1 and c1 = 3\G;
    2. *************************** 1. row ***************************
    3. Query Plan: ===================================
    4. |ID|OPERATOR |NAME|EST. ROWS|COST|
    5. -----------------------------------
    6. |0 |TABLE SCAN|t1 |0 |38 |
    7. ===================================
    8. Outputs & filters:
    9. -------------------------------------
    10. 0 - output([t1.c1], [t1.c2]), filter([0], [t1.c1 = 3]), startup_filter([0]),
    11. access([t1.c1], [t1.c2]), partitions(p0),
    12. is_index_back=false, filter_before_indexback[false,false],
    13. range_key([t1.__pk_increment], [t1.__pk_cluster_id], [t1.__pk_partition_id]),
    14. range(MAX,MAX,MAX ; MIN,MIN,MIN)always false

    非SPJ的改写

    冗余排序消除

    冗余排序消除是指删除order item中不需要的项,减少排序开销 ,以下三种情况可进行排序消除:

    • ORDER BY表达式列表中有重复列, 可进行去重后排序;
    1. Select * from t1 where c2 = 5 order by c1, c1, c2, c3
    2. <==>
    3. Select * from t1 where c2 = 5 order by c1, c2, c3
    • ORDER BY列中存在where中有单值条件的列, 则该列排序可删除
    1. Select * from t1 where c2 = 5 order by c1, c2, c3
    2. <==>
    3. Select * from t1 where c2 = 5 order by c1, c3
    • 如果本层查询有order by但是没有limit,且本层查询位于父查询的集合操作中,则order by可消除。因为对两个有序的集合做union操作,其结果是乱序的。但是如果order by中有limit,则语义是取最大/小的N个,此时不能消除order by,否则有语义错误。
    1. (select c1,c2 from t1 order by c1) union (select c3,c4 from t2 order by c3)
    2. <==>
    3. (select c1,c2 from t1) union (select c3,c4 from t2)

    limit下压

    limit下压改写是指将limit下降到子查询中,OceanBase现在支持在不改变语义的情况下,将limit下压到视图(示例1)及union对应子查询(示例2)中。

    1. select * from (select * from t1 order by c1) a limit 1;
    2. <==>
    3. select * from (select * from t1 order by c1 limit 1) a limit 1;
    1. (select c1,c2 from t1) union all (select c3,c4 from t2) limit 5
    2. <==>
    3. (select c1,c2 from t1 limit 5) union all (select c3,c4 from t2 limit 5) limit 5

    distinct消除

    • 如果select item中只包含常量, 则可以消除distinct, 并加上limit 1;
    1. Select distinct 1,2 from t1
    2. <==>
    3. Select 1,2 from t1 limit 1
    4. create table t1 (c1 int primary key, c2 int);
    5. explain extended_noaddr Select distinct 1,2 from t1\G;
    6. *************************** 1. row ***************************
    7. Query Plan: ===================================
    8. |ID|OPERATOR |NAME|EST. ROWS|COST|
    9. -----------------------------------
    10. |0 |TABLE SCAN|t1 |1 |36 |
    11. ===================================
    12. Outputs & filters:
    13. -------------------------------------
    14. 0 - output([1], [2]), filter(nil),
    15. access([t1.c1]), partitions(p0),
    16. limit(1), offset(nil),
    17. is_index_back=false,
    18. range_key([t1.c1]), range(MIN ; MAX)always true
    • 如果select item中包含确保唯一性约束的列,则distinct 能够消除, 如下举例中 (c1, c2)为主键,可确保c1, c2, c3唯一性, 从而distinct 可消除;
    1. create table t2(c1 int, c2 int, c3 int, primary key(c1, c2));
    2. select distinct c1, c2, c3 from t2
    3. <==>
    4. select c1, c2 c3 from t2;
    5. explain select distinct c1, c2, c3 from t2\G;
    6. *************************** 1. row ***************************
    7. Query Plan: ===================================
    8. |ID|OPERATOR |NAME|EST. ROWS|COST|
    9. -----------------------------------
    10. |0 |TABLE SCAN|t2 |1000 |455 |
    11. ===================================
    12. Outputs & filters:
    13. -------------------------------------
    14. 0 - output([t2.c1], [t2.c2], [t2.c3]), filter(nil),
    15. access([t2.c1], [t2.c2], [t2.c3]), partitions(p0)

    MIN/MAX改写

    • 当MIN/MAX函数中参数为索引前缀列, 且不含group by时,可将该scalar aggregate转换为走索引扫描1行的情况,举例如下:
    1. create table t1 (c1 int primary key, c2 int, c3 int, key idx_c2_c3(c2,c3));
    2. select min(c2) from t1;
    3. <==>
    4. select min(c2) from (select c2 from t2 order by c2 limit 1) as t;
    5. explain select min(c2) from t1\G;
    6. *************************** 1. row ***************************
    7. Query Plan: ==================================================
    8. |ID|OPERATOR |NAME |EST. ROWS|COST|
    9. --------------------------------------------------
    10. |0 |SCALAR GROUP BY| |1 |37 |
    11. |1 | SUBPLAN SCAN |subquery_table|1 |37 |
    12. |2 | TABLE SCAN |t1(idx_c2_c3) |1 |36 |
    13. ==================================================
    14. Outputs & filters:
    15. -------------------------------------
    16. 0 - output([T_FUN_MIN(subquery_table.c2)]), filter(nil),
    17. group(nil), agg_func([T_FUN_MIN(subquery_table.c2)])
    18. 1 - output([subquery_table.c2]), filter(nil),
    19. access([subquery_table.c2])
    20. 2 - output([t1.c2]), filter([(T_OP_IS_NOT, t1.c2, NULL, 0)]),
    21. access([t1.c2]), partitions(p0),
    22. limit(1), offset(nil)
    • 如果select MIN/MAX的参数为常量,且包含group by则可已将MIN/MAX改为常量,从而减少MIN/MAX的计算开销。
    1. select max(1) from t1 group by c1;
    2. <==>
    3. select 1 from t1 group by c1;
    4. explain extended_noaddr select max(1) from t1 group by c1\G;
    5. *************************** 1. row ***************************
    6. Query Plan: ===================================
    7. |ID|OPERATOR |NAME|EST. ROWS|COST|
    8. -----------------------------------
    9. |0 |TABLE SCAN|t1 |1000 |411 |
    10. ===================================
    11. Outputs & filters:
    12. -------------------------------------
    13. 0 - output([1]), filter(nil),
    14. access([t1.c1]), partitions(p0),
    15. is_index_back=false,
    16. range_key([t1.c1]), range(MIN ; MAX)always true
    • 如果select MIN/MAX的参数为常量,且不含group by, 可进行如下改写, 从而走索引只需扫描1行。
    1. select max(1) from t1;
    2. <==>
    3. select max(t.a) from (select 1 as a from t1 limit 1) t;
    4. explain extended_noaddr select max(1) from t1\G;
    5. *************************** 1. row ***************************
    6. Query Plan: ==================================================
    7. |ID|OPERATOR |NAME |EST. ROWS|COST|
    8. --------------------------------------------------
    9. |0 |SCALAR GROUP BY| |1 |37 |
    10. |1 | SUBPLAN SCAN |subquery_table|1 |37 |
    11. |2 | TABLE SCAN |t1 |1 |36 |
    12. ==================================================
    13. Outputs & filters:
    14. -------------------------------------
    15. 0 - output([T_FUN_MAX(subquery_table.subquery_col_alias)]), filter(nil),
    16. group(nil), agg_func([T_FUN_MAX(subquery_table.subquery_col_alias)])
    17. 1 - output([subquery_table.subquery_col_alias]), filter(nil),
    18. access([subquery_table.subquery_col_alias])
    19. 2 - output([1]), filter(nil),
    20. access([t1.c1]), partitions(p0),
    21. limit(1), offset(nil),
    22. is_index_back=false,
    23. range_key([t1.c1]), range(MIN ; MAX)always true