各种绘图实例

简单绘图

plot 函数:

In [1]:

  1. %matplotlib inline
  2.  
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5.  
  6. t = np.arange(0.0, 2.0, 0.01)
  7. s = np.sin(2*np.pi*t)
  8. plt.plot(t, s)
  9.  
  10. plt.xlabel('time (s)')
  11. plt.ylabel('voltage (mV)')
  12. plt.title('About as simple as it gets, folks')
  13. plt.grid(True)
  14. plt.show()

06.10 各种绘图实例 - 图1

子图

subplot 函数:

In [2]:

  1. import numpy as np
  2. import matplotlib.mlab as mlab
  3.  
  4. x1 = np.linspace(0.0, 5.0)
  5. x2 = np.linspace(0.0, 2.0)
  6.  
  7. y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
  8. y2 = np.cos(2 * np.pi * x2)
  9.  
  10. plt.subplot(2, 1, 1)
  11. plt.plot(x1, y1, 'yo-')
  12. plt.title('A tale of 2 subplots')
  13. plt.ylabel('Damped oscillation')
  14.  
  15. plt.subplot(2, 1, 2)
  16. plt.plot(x2, y2, 'r.-')
  17. plt.xlabel('time (s)')
  18. plt.ylabel('Undamped')
  19.  
  20. plt.show()

06.10 各种绘图实例 - 图2

直方图

hist 函数:

In [3]:

  1. import numpy as np
  2. import matplotlib.mlab as mlab
  3. import matplotlib.pyplot as plt
  4.  
  5. # example data
  6. mu = 100 # mean of distribution
  7. sigma = 15 # standard deviation of distribution
  8. x = mu + sigma * np.random.randn(10000)
  9.  
  10. num_bins = 50
  11. # the histogram of the data
  12. n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='green', alpha=0.5)
  13. # add a 'best fit' line
  14. y = mlab.normpdf(bins, mu, sigma)
  15. plt.plot(bins, y, 'r--')
  16. plt.xlabel('Smarts')
  17. plt.ylabel('Probability')
  18. plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')
  19.  
  20. # Tweak spacing to prevent clipping of ylabel
  21. plt.subplots_adjust(left=0.15)
  22. plt.show()

06.10 各种绘图实例 - 图3

路径图

matplotlib.path 包:

In [4]:

  1. import matplotlib.path as mpath
  2. import matplotlib.patches as mpatches
  3. import matplotlib.pyplot as plt
  4.  
  5. fig, ax = plt.subplots()
  6.  
  7. Path = mpath.Path
  8. path_data = [
  9. (Path.MOVETO, (1.58, -2.57)),
  10. (Path.CURVE4, (0.35, -1.1)),
  11. (Path.CURVE4, (-1.75, 2.0)),
  12. (Path.CURVE4, (0.375, 2.0)),
  13. (Path.LINETO, (0.85, 1.15)),
  14. (Path.CURVE4, (2.2, 3.2)),
  15. (Path.CURVE4, (3, 0.05)),
  16. (Path.CURVE4, (2.0, -0.5)),
  17. (Path.CLOSEPOLY, (1.58, -2.57)),
  18. ]
  19. codes, verts = zip(*path_data)
  20. path = mpath.Path(verts, codes)
  21. patch = mpatches.PathPatch(path, facecolor='r', alpha=0.5)
  22. ax.add_patch(patch)
  23.  
  24. # plot control points and connecting lines
  25. x, y = zip(*path.vertices)
  26. line, = ax.plot(x, y, 'go-')
  27.  
  28. ax.grid()
  29. ax.axis('equal')
  30. plt.show()

06.10 各种绘图实例 - 图4

三维绘图

导入 Axex3D

In [5]:

  1. from mpl_toolkits.mplot3d import Axes3D
  2. from matplotlib import cm
  3. from matplotlib.ticker import LinearLocator, FormatStrFormatter
  4. import matplotlib.pyplot as plt
  5. import numpy as np
  6.  
  7. fig = plt.figure()
  8. ax = fig.gca(projection='3d')
  9. X = np.arange(-5, 5, 0.25)
  10. Y = np.arange(-5, 5, 0.25)
  11. X, Y = np.meshgrid(X, Y)
  12. R = np.sqrt(X**2 + Y**2)
  13. Z = np.sin(R)
  14. surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
  15. linewidth=0, antialiased=False)
  16. ax.set_zlim(-1.01, 1.01)
  17.  
  18. ax.zaxis.set_major_locator(LinearLocator(10))
  19. ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
  20.  
  21. fig.colorbar(surf, shrink=0.5, aspect=5)
  22.  
  23. plt.show()

06.10 各种绘图实例 - 图5

流向图

主要函数:plt.streamplot

In [6]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4. Y, X = np.mgrid[-3:3:100j, -3:3:100j]
  5. U = -1 - X**2 + Y
  6. V = 1 + X - Y**2
  7. speed = np.sqrt(U*U + V*V)
  8.  
  9. plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn)
  10. plt.colorbar()
  11.  
  12. f, (ax1, ax2) = plt.subplots(ncols=2)
  13. ax1.streamplot(X, Y, U, V, density=[0.5, 1])
  14.  
  15. lw = 5*speed/speed.max()
  16. ax2.streamplot(X, Y, U, V, density=0.6, color='k', linewidth=lw)
  17.  
  18. plt.show()

06.10 各种绘图实例 - 图6

06.10 各种绘图实例 - 图7

椭圆

Ellipse 对象:

In [7]:

  1. from pylab import figure, show, rand
  2. from matplotlib.patches import Ellipse
  3.  
  4. NUM = 250
  5.  
  6. ells = [Ellipse(xy=rand(2)*10, width=rand(), height=rand(), angle=rand()*360)
  7. for i in range(NUM)]
  8.  
  9. fig = figure()
  10. ax = fig.add_subplot(111, aspect='equal')
  11. for e in ells:
  12. ax.add_artist(e)
  13. e.set_clip_box(ax.bbox)
  14. e.set_alpha(rand())
  15. e.set_facecolor(rand(3))
  16.  
  17. ax.set_xlim(0, 10)
  18. ax.set_ylim(0, 10)
  19.  
  20. show()

06.10 各种绘图实例 - 图8

条状图

bar 函数:

In [8]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4.  
  5. n_groups = 5
  6.  
  7. means_men = (20, 35, 30, 35, 27)
  8. std_men = (2, 3, 4, 1, 2)
  9.  
  10. means_women = (25, 32, 34, 20, 25)
  11. std_women = (3, 5, 2, 3, 3)
  12.  
  13. fig, ax = plt.subplots()
  14.  
  15. index = np.arange(n_groups)
  16. bar_width = 0.35
  17.  
  18. opacity = 0.4
  19. error_config = {'ecolor': '0.3'}
  20.  
  21. rects1 = plt.bar(index, means_men, bar_width,
  22. alpha=opacity,
  23. color='b',
  24. yerr=std_men,
  25. error_kw=error_config,
  26. label='Men')
  27.  
  28. rects2 = plt.bar(index + bar_width, means_women, bar_width,
  29. alpha=opacity,
  30. color='r',
  31. yerr=std_women,
  32. error_kw=error_config,
  33. label='Women')
  34.  
  35. plt.xlabel('Group')
  36. plt.ylabel('Scores')
  37. plt.title('Scores by group and gender')
  38. plt.xticks(index + bar_width, ('A', 'B', 'C', 'D', 'E'))
  39. plt.legend()
  40.  
  41. plt.tight_layout()
  42. plt.show()

06.10 各种绘图实例 - 图9

饼状图

pie 函数:

In [9]:

  1. import matplotlib.pyplot as plt
  2.  
  3.  
  4. # The slices will be ordered and plotted counter-clockwise.
  5. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
  6. sizes = [15, 30, 45, 10]
  7. colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']
  8. explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')
  9.  
  10. plt.pie(sizes, explode=explode, labels=labels, colors=colors,
  11. autopct='%1.1f%%', shadow=True, startangle=90)
  12. # Set aspect ratio to be equal so that pie is drawn as a circle.
  13. plt.axis('equal')
  14.  
  15. plt.show()

06.10 各种绘图实例 - 图10

图像中的表格

table 函数:

In [10]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4.  
  5. data = [[ 66386, 174296, 75131, 577908, 32015],
  6. [ 58230, 381139, 78045, 99308, 160454],
  7. [ 89135, 80552, 152558, 497981, 603535],
  8. [ 78415, 81858, 150656, 193263, 69638],
  9. [ 139361, 331509, 343164, 781380, 52269]]
  10.  
  11. columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
  12. rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]
  13.  
  14. values = np.arange(0, 2500, 500)
  15. value_increment = 1000
  16.  
  17. # Get some pastel shades for the colors
  18. colors = plt.cm.BuPu(np.linspace(0, 0.5, len(columns)))
  19. n_rows = len(data)
  20.  
  21. index = np.arange(len(columns)) + 0.3
  22. bar_width = 0.4
  23.  
  24. # Initialize the vertical-offset for the stacked bar chart.
  25. y_offset = np.array([0.0] * len(columns))
  26.  
  27. # Plot bars and create text labels for the table
  28. cell_text = []
  29. for row in range(n_rows):
  30. plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row])
  31. y_offset = y_offset + data[row]
  32. cell_text.append(['%1.1f' % (x/1000.0) for x in y_offset])
  33. # Reverse colors and text labels to display the last value at the top.
  34. colors = colors[::-1]
  35. cell_text.reverse()
  36.  
  37. # Add a table at the bottom of the axes
  38. the_table = plt.table(cellText=cell_text,
  39. rowLabels=rows,
  40. rowColours=colors,
  41. colLabels=columns,
  42. loc='bottom')
  43.  
  44. # Adjust layout to make room for the table:
  45. plt.subplots_adjust(left=0.2, bottom=0.2)
  46.  
  47. plt.ylabel("Loss in ${0}'s".format(value_increment))
  48. plt.yticks(values * value_increment, ['%d' % val for val in values])
  49. plt.xticks([])
  50. plt.title('Loss by Disaster')
  51.  
  52. plt.show()

06.10 各种绘图实例 - 图11

散点图

scatter 函数:

In [11]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. import matplotlib.cbook as cbook
  4.  
  5. # Load a numpy record array from yahoo csv data with fields date,
  6. # open, close, volume, adj_close from the mpl-data/example directory.
  7. # The record array stores python datetime.date as an object array in
  8. # the date column
  9. datafile = cbook.get_sample_data('goog.npy')
  10. price_data = np.load(datafile).view(np.recarray)
  11. price_data = price_data[-250:] # get the most recent 250 trading days
  12.  
  13. delta1 = np.diff(price_data.adj_close)/price_data.adj_close[:-1]
  14.  
  15. # Marker size in units of points^2
  16. volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2
  17. close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2]
  18.  
  19. fig, ax = plt.subplots()
  20. ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5)
  21.  
  22. ax.set_xlabel(r'$\Delta_i$', fontsize=20)
  23. ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=20)
  24. ax.set_title('Volume and percent change')
  25.  
  26. ax.grid(True)
  27. fig.tight_layout()
  28.  
  29. plt.show()

06.10 各种绘图实例 - 图12

设置按钮

matplotlib.widgets 模块:

In [12]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. from matplotlib.widgets import Slider, Button, RadioButtons
  4.  
  5. fig, ax = plt.subplots()
  6. plt.subplots_adjust(left=0.25, bottom=0.25)
  7. t = np.arange(0.0, 1.0, 0.001)
  8. a0 = 5
  9. f0 = 3
  10. s = a0*np.sin(2*np.pi*f0*t)
  11. l, = plt.plot(t,s, lw=2, color='red')
  12. plt.axis([0, 1, -10, 10])
  13.  
  14. axcolor = 'lightgoldenrodyellow'
  15. axfreq = plt.axes([0.25, 0.1, 0.65, 0.03], axisbg=axcolor)
  16. axamp = plt.axes([0.25, 0.15, 0.65, 0.03], axisbg=axcolor)
  17.  
  18. sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0)
  19. samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0)
  20.  
  21. def update(val):
  22. amp = samp.val
  23. freq = sfreq.val
  24. l.set_ydata(amp*np.sin(2*np.pi*freq*t))
  25. fig.canvas.draw_idle()
  26. sfreq.on_changed(update)
  27. samp.on_changed(update)
  28.  
  29. resetax = plt.axes([0.8, 0.025, 0.1, 0.04])
  30. button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
  31. def reset(event):
  32. sfreq.reset()
  33. samp.reset()
  34. button.on_clicked(reset)
  35.  
  36. rax = plt.axes([0.025, 0.5, 0.15, 0.15], axisbg=axcolor)
  37. radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0)
  38. def colorfunc(label):
  39. l.set_color(label)
  40. fig.canvas.draw_idle()
  41. radio.on_clicked(colorfunc)
  42.  
  43. plt.show()

06.10 各种绘图实例 - 图13

填充曲线

fill 函数:

In [13]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4.  
  5. x = np.linspace(0, 1)
  6. y = np.sin(4 * np.pi * x) * np.exp(-5 * x)
  7.  
  8. plt.fill(x, y, 'r')
  9. plt.grid(True)
  10. plt.show()

06.10 各种绘图实例 - 图14

时间刻度

In [14]:

  1. """
  2. Show how to make date plots in matplotlib using date tick locators and
  3. formatters. See major_minor_demo1.py for more information on
  4. controlling major and minor ticks
  5.  
  6. All matplotlib date plotting is done by converting date instances into
  7. days since the 0001-01-01 UTC. The conversion, tick locating and
  8. formatting is done behind the scenes so this is most transparent to
  9. you. The dates module provides several converter functions date2num
  10. and num2date
  11.  
  12. """
  13. import datetime
  14. import numpy as np
  15. import matplotlib.pyplot as plt
  16. import matplotlib.dates as mdates
  17. import matplotlib.cbook as cbook
  18.  
  19. years = mdates.YearLocator() # every year
  20. months = mdates.MonthLocator() # every month
  21. yearsFmt = mdates.DateFormatter('%Y')
  22.  
  23. # load a numpy record array from yahoo csv data with fields date,
  24. # open, close, volume, adj_close from the mpl-data/example directory.
  25. # The record array stores python datetime.date as an object array in
  26. # the date column
  27. datafile = cbook.get_sample_data('goog.npy')
  28. r = np.load(datafile).view(np.recarray)
  29.  
  30. fig, ax = plt.subplots()
  31. ax.plot(r.date, r.adj_close)
  32.  
  33.  
  34. # format the ticks
  35. ax.xaxis.set_major_locator(years)
  36. ax.xaxis.set_major_formatter(yearsFmt)
  37. ax.xaxis.set_minor_locator(months)
  38.  
  39. datemin = datetime.date(r.date.min().year, 1, 1)
  40. datemax = datetime.date(r.date.max().year+1, 1, 1)
  41. ax.set_xlim(datemin, datemax)
  42.  
  43. # format the coords message box
  44. def price(x): return '$%1.2f'%x
  45. ax.format_xdata = mdates.DateFormatter('%Y-%m-%d')
  46. ax.format_ydata = price
  47. ax.grid(True)
  48.  
  49. # rotates and right aligns the x labels, and moves the bottom of the
  50. # axes up to make room for them
  51. fig.autofmt_xdate()
  52.  
  53. plt.show()

06.10 各种绘图实例 - 图15

金融数据

In [15]:

  1. import datetime
  2. import numpy as np
  3. import matplotlib.colors as colors
  4. import matplotlib.finance as finance
  5. import matplotlib.dates as mdates
  6. import matplotlib.ticker as mticker
  7. import matplotlib.mlab as mlab
  8. import matplotlib.pyplot as plt
  9. import matplotlib.font_manager as font_manager
  10.  
  11.  
  12. startdate = datetime.date(2006,1,1)
  13. today = enddate = datetime.date.today()
  14. ticker = 'SPY'
  15.  
  16.  
  17. fh = finance.fetch_historical_yahoo(ticker, startdate, enddate)
  18. # a numpy record array with fields: date, open, high, low, close, volume, adj_close)
  19.  
  20. r = mlab.csv2rec(fh); fh.close()
  21. r.sort()
  22.  
  23.  
  24. def moving_average(x, n, type='simple'):
  25. """
  26. compute an n period moving average.
  27.  
  28. type is 'simple' | 'exponential'
  29.  
  30. """
  31. x = np.asarray(x)
  32. if type=='simple':
  33. weights = np.ones(n)
  34. else:
  35. weights = np.exp(np.linspace(-1., 0., n))
  36.  
  37. weights /= weights.sum()
  38.  
  39.  
  40. a = np.convolve(x, weights, mode='full')[:len(x)]
  41. a[:n] = a[n]
  42. return a
  43.  
  44. def relative_strength(prices, n=14):
  45. """
  46. compute the n period relative strength indicator
  47. http://stockcharts.com/school/doku.php?id=chart_school:glossary_r#relativestrengthindex
  48. http://www.investopedia.com/terms/r/rsi.asp
  49. """
  50.  
  51. deltas = np.diff(prices)
  52. seed = deltas[:n+1]
  53. up = seed[seed>=0].sum()/n
  54. down = -seed[seed<0].sum()/n
  55. rs = up/down
  56. rsi = np.zeros_like(prices)
  57. rsi[:n] = 100. - 100./(1.+rs)
  58.  
  59. for i in range(n, len(prices)):
  60. delta = deltas[i-1] # cause the diff is 1 shorter
  61.  
  62. if delta>0:
  63. upval = delta
  64. downval = 0.
  65. else:
  66. upval = 0.
  67. downval = -delta
  68.  
  69. up = (up*(n-1) + upval)/n
  70. down = (down*(n-1) + downval)/n
  71.  
  72. rs = up/down
  73. rsi[i] = 100. - 100./(1.+rs)
  74.  
  75. return rsi
  76.  
  77. def moving_average_convergence(x, nslow=26, nfast=12):
  78. """
  79. compute the MACD (Moving Average Convergence/Divergence) using a fast and slow exponential moving avg'
  80. return value is emaslow, emafast, macd which are len(x) arrays
  81. """
  82. emaslow = moving_average(x, nslow, type='exponential')
  83. emafast = moving_average(x, nfast, type='exponential')
  84. return emaslow, emafast, emafast - emaslow
  85.  
  86.  
  87. plt.rc('axes', grid=True)
  88. plt.rc('grid', color='0.75', linestyle='-', linewidth=0.5)
  89.  
  90. textsize = 9
  91. left, width = 0.1, 0.8
  92. rect1 = [left, 0.7, width, 0.2]
  93. rect2 = [left, 0.3, width, 0.4]
  94. rect3 = [left, 0.1, width, 0.2]
  95.  
  96.  
  97. fig = plt.figure(facecolor='white')
  98. axescolor = '#f6f6f6' # the axes background color
  99.  
  100. ax1 = fig.add_axes(rect1, axisbg=axescolor) #left, bottom, width, height
  101. ax2 = fig.add_axes(rect2, axisbg=axescolor, sharex=ax1)
  102. ax2t = ax2.twinx()
  103. ax3 = fig.add_axes(rect3, axisbg=axescolor, sharex=ax1)
  104.  
  105.  
  106.  
  107. ### plot the relative strength indicator
  108. prices = r.adj_close
  109. rsi = relative_strength(prices)
  110. fillcolor = 'darkgoldenrod'
  111.  
  112. ax1.plot(r.date, rsi, color=fillcolor)
  113. ax1.axhline(70, color=fillcolor)
  114. ax1.axhline(30, color=fillcolor)
  115. ax1.fill_between(r.date, rsi, 70, where=(rsi>=70), facecolor=fillcolor, edgecolor=fillcolor)
  116. ax1.fill_between(r.date, rsi, 30, where=(rsi<=30), facecolor=fillcolor, edgecolor=fillcolor)
  117. ax1.text(0.6, 0.9, '>70 = overbought', va='top', transform=ax1.transAxes, fontsize=textsize)
  118. ax1.text(0.6, 0.1, '<30 = oversold', transform=ax1.transAxes, fontsize=textsize)
  119. ax1.set_ylim(0, 100)
  120. ax1.set_yticks([30,70])
  121. ax1.text(0.025, 0.95, 'RSI (14)', va='top', transform=ax1.transAxes, fontsize=textsize)
  122. ax1.set_title('%s daily'%ticker)
  123.  
  124. ### plot the price and volume data
  125. dx = r.adj_close - r.close
  126. low = r.low + dx
  127. high = r.high + dx
  128.  
  129. deltas = np.zeros_like(prices)
  130. deltas[1:] = np.diff(prices)
  131. up = deltas>0
  132. ax2.vlines(r.date[up], low[up], high[up], color='black', label='_nolegend_')
  133. ax2.vlines(r.date[~up], low[~up], high[~up], color='black', label='_nolegend_')
  134. ma20 = moving_average(prices, 20, type='simple')
  135. ma200 = moving_average(prices, 200, type='simple')
  136.  
  137. linema20, = ax2.plot(r.date, ma20, color='blue', lw=2, label='MA (20)')
  138. linema200, = ax2.plot(r.date, ma200, color='red', lw=2, label='MA (200)')
  139.  
  140.  
  141. last = r[-1]
  142. s = '%s O:%1.2f H:%1.2f L:%1.2f C:%1.2f, V:%1.1fM Chg:%+1.2f' % (
  143. today.strftime('%d-%b-%Y'),
  144. last.open, last.high,
  145. last.low, last.close,
  146. last.volume*1e-6,
  147. last.close-last.open )
  148. t4 = ax2.text(0.3, 0.9, s, transform=ax2.transAxes, fontsize=textsize)
  149.  
  150. props = font_manager.FontProperties(size=10)
  151. leg = ax2.legend(loc='center left', shadow=True, fancybox=True, prop=props)
  152. leg.get_frame().set_alpha(0.5)
  153.  
  154.  
  155. volume = (r.close*r.volume)/1e6 # dollar volume in millions
  156. vmax = volume.max()
  157. poly = ax2t.fill_between(r.date, volume, 0, label='Volume', facecolor=fillcolor, edgecolor=fillcolor)
  158. ax2t.set_ylim(0, 5*vmax)
  159. ax2t.set_yticks([])
  160.  
  161.  
  162. ### compute the MACD indicator
  163. fillcolor = 'darkslategrey'
  164. nslow = 26
  165. nfast = 12
  166. nema = 9
  167. emaslow, emafast, macd = moving_average_convergence(prices, nslow=nslow, nfast=nfast)
  168. ema9 = moving_average(macd, nema, type='exponential')
  169. ax3.plot(r.date, macd, color='black', lw=2)
  170. ax3.plot(r.date, ema9, color='blue', lw=1)
  171. ax3.fill_between(r.date, macd-ema9, 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)
  172.  
  173.  
  174. ax3.text(0.025, 0.95, 'MACD (%d, %d, %d)'%(nfast, nslow, nema), va='top',
  175. transform=ax3.transAxes, fontsize=textsize)
  176.  
  177. #ax3.set_yticks([])
  178. # turn off upper axis tick labels, rotate the lower ones, etc
  179. for ax in ax1, ax2, ax2t, ax3:
  180. if ax!=ax3:
  181. for label in ax.get_xticklabels():
  182. label.set_visible(False)
  183. else:
  184. for label in ax.get_xticklabels():
  185. label.set_rotation(30)
  186. label.set_horizontalalignment('right')
  187.  
  188. ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d')
  189.  
  190.  
  191.  
  192. class MyLocator(mticker.MaxNLocator):
  193. def __init__(self, *args, **kwargs):
  194. mticker.MaxNLocator.__init__(self, *args, **kwargs)
  195.  
  196. def __call__(self, *args, **kwargs):
  197. return mticker.MaxNLocator.__call__(self, *args, **kwargs)
  198.  
  199. # at most 5 ticks, pruning the upper and lower so they don't overlap
  200. # with other ticks
  201. #ax2.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both'))
  202. #ax3.yaxis.set_major_locator(mticker.MaxNLocator(5, prune='both'))
  203.  
  204. ax2.yaxis.set_major_locator(MyLocator(5, prune='both'))
  205. ax3.yaxis.set_major_locator(MyLocator(5, prune='both'))
  206.  
  207. plt.show()

06.10 各种绘图实例 - 图16

basemap 画地图

需要安装 basemap 包:

In [16]:

  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3.  
  4. try:
  5. from mpl_toolkits.basemap import Basemap
  6. have_basemap = True
  7. except ImportError:
  8. have_basemap = False
  9.  
  10.  
  11. def plotmap():
  12. # create figure
  13. fig = plt.figure(figsize=(8,8))
  14. # set up orthographic map projection with
  15. # perspective of satellite looking down at 50N, 100W.
  16. # use low resolution coastlines.
  17. map = Basemap(projection='ortho',lat_0=50,lon_0=-100,resolution='l')
  18. # lat/lon coordinates of five cities.
  19. lats=[40.02,32.73,38.55,48.25,17.29]
  20. lons=[-105.16,-117.16,-77.00,-114.21,-88.10]
  21. cities=['Boulder, CO','San Diego, CA',
  22. 'Washington, DC','Whitefish, MT','Belize City, Belize']
  23. # compute the native map projection coordinates for cities.
  24. xc,yc = map(lons,lats)
  25. # make up some data on a regular lat/lon grid.
  26. nlats = 73; nlons = 145; delta = 2.*np.pi/(nlons-1)
  27. lats = (0.5*np.pi-delta*np.indices((nlats,nlons))[0,:,:])
  28. lons = (delta*np.indices((nlats,nlons))[1,:,:])
  29. wave = 0.75*(np.sin(2.*lats)**8*np.cos(4.*lons))
  30. mean = 0.5*np.cos(2.*lats)*((np.sin(2.*lats))**2 + 2.)
  31. # compute native map projection coordinates of lat/lon grid.
  32. # (convert lons and lats to degrees first)
  33. x, y = map(lons*180./np.pi, lats*180./np.pi)
  34. # draw map boundary
  35. map.drawmapboundary(color="0.9")
  36. # draw graticule (latitude and longitude grid lines)
  37. map.drawmeridians(np.arange(0,360,30),color="0.9")
  38. map.drawparallels(np.arange(-90,90,30),color="0.9")
  39. # plot filled circles at the locations of the cities.
  40. map.plot(xc,yc,'wo')
  41. # plot the names of five cities.
  42. for name,xpt,ypt in zip(cities,xc,yc):
  43. plt.text(xpt+100000,ypt+100000,name,fontsize=9,color='w')
  44. # contour data over the map.
  45. cs = map.contour(x,y,wave+mean,15,linewidths=1.5)
  46. # draw blue marble image in background.
  47. # (downsample the image by 50% for speed)
  48. map.bluemarble(scale=0.5)
  49.  
  50. def plotempty():
  51. # create figure
  52. fig = plt.figure(figsize=(8,8))
  53. fig.text(0.5, 0.5, "Sorry, could not import Basemap",
  54. horizontalalignment='center')
  55.  
  56. if have_basemap:
  57. plotmap()
  58. else:
  59. plotempty()
  60. plt.show()

06.10 各种绘图实例 - 图17

对数图

loglog, semilogx, semilogy, errorbar 函数:

In [17]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4. plt.subplots_adjust(hspace=0.4)
  5. t = np.arange(0.01, 20.0, 0.01)
  6.  
  7. # log y axis
  8. plt.subplot(221)
  9. plt.semilogy(t, np.exp(-t/5.0))
  10. plt.title('semilogy')
  11. plt.grid(True)
  12.  
  13. # log x axis
  14. plt.subplot(222)
  15. plt.semilogx(t, np.sin(2*np.pi*t))
  16. plt.title('semilogx')
  17. plt.grid(True)
  18.  
  19. # log x and y axis
  20. plt.subplot(223)
  21. plt.loglog(t, 20*np.exp(-t/10.0), basex=2)
  22. plt.grid(True)
  23. plt.title('loglog base 4 on x')
  24.  
  25. # with errorbars: clip non-positive values
  26. ax = plt.subplot(224)
  27. ax.set_xscale("log", nonposx='clip')
  28. ax.set_yscale("log", nonposy='clip')
  29.  
  30. x = 10.0**np.linspace(0.0, 2.0, 20)
  31. y = x**2.0
  32. plt.errorbar(x, y, xerr=0.1*x, yerr=5.0+0.75*y)
  33. ax.set_ylim(ymin=0.1)
  34. ax.set_title('Errorbars go negative')
  35.  
  36.  
  37. plt.show()

06.10 各种绘图实例 - 图18

极坐标

设置 polar=True

In [18]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4.  
  5. r = np.arange(0, 3.0, 0.01)
  6. theta = 2 * np.pi * r
  7.  
  8. ax = plt.subplot(111, polar=True)
  9. ax.plot(theta, r, color='r', linewidth=3)
  10. ax.set_rmax(2.0)
  11. ax.grid(True)
  12.  
  13. ax.set_title("A line plot on a polar axis", va='bottom')
  14. plt.show()

06.10 各种绘图实例 - 图19

标注

legend 函数:

In [19]:

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3.  
  4. # Make some fake data.
  5. a = b = np.arange(0,3, .02)
  6. c = np.exp(a)
  7. d = c[::-1]
  8.  
  9. # Create plots with pre-defined labels.
  10. plt.plot(a, c, 'k--', label='Model length')
  11. plt.plot(a, d, 'k:', label='Data length')
  12. plt.plot(a, c+d, 'k', label='Total message length')
  13.  
  14. legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large')
  15.  
  16. # Put a nicer background color on the legend.
  17. legend.get_frame().set_facecolor('#00FFCC')
  18.  
  19. plt.show()

06.10 各种绘图实例 - 图20

数学公式

In [20]:

  1. from __future__ import print_function
  2. import matplotlib.pyplot as plt
  3. import os
  4. import sys
  5. import re
  6. import gc
  7.  
  8. # Selection of features following "Writing mathematical expressions" tutorial
  9. mathtext_titles = {
  10. 0: "Header demo",
  11. 1: "Subscripts and superscripts",
  12. 2: "Fractions, binomials and stacked numbers",
  13. 3: "Radicals",
  14. 4: "Fonts",
  15. 5: "Accents",
  16. 6: "Greek, Hebrew",
  17. 7: "Delimiters, functions and Symbols"}
  18. n_lines = len(mathtext_titles)
  19.  
  20. # Randomly picked examples
  21. mathext_demos = {
  22. 0: r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = "
  23. r"U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} "
  24. r"\int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ "
  25. r"U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_"
  26. r"{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$",
  27.  
  28. 1: r"$\alpha_i > \beta_i,\ "
  29. r"\alpha_{i+1}^j = {\rm sin}(2\pi f_j t_i) e^{-5 t_i/\tau},\ "
  30. r"\ldots$",
  31.  
  32. 2: r"$\frac{3}{4},\ \binom{3}{4},\ \stackrel{3}{4},\ "
  33. r"\left(\frac{5 - \frac{1}{x}}{4}\right),\ \ldots$",
  34.  
  35. 3: r"$\sqrt{2},\ \sqrt[3]{x},\ \ldots$",
  36.  
  37. 4: r"$\mathrm{Roman}\ , \ \mathit{Italic}\ , \ \mathtt{Typewriter} \ "
  38. r"\mathrm{or}\ \mathcal{CALLIGRAPHY}$",
  39.  
  40. 5: r"$\acute a,\ \bar a,\ \breve a,\ \dot a,\ \ddot a, \ \grave a, \ "
  41. r"\hat a,\ \tilde a,\ \vec a,\ \widehat{xyz},\ \widetilde{xyz},\ "
  42. r"\ldots$",
  43.  
  44. 6: r"$\alpha,\ \beta,\ \chi,\ \delta,\ \lambda,\ \mu,\ "
  45. r"\Delta,\ \Gamma,\ \Omega,\ \Phi,\ \Pi,\ \Upsilon,\ \nabla,\ "
  46. r"\aleph,\ \beth,\ \daleth,\ \gimel,\ \ldots$",
  47.  
  48. 7: r"$\coprod,\ \int,\ \oint,\ \prod,\ \sum,\ "
  49. r"\log,\ \sin,\ \approx,\ \oplus,\ \star,\ \varpropto,\ "
  50. r"\infty,\ \partial,\ \Re,\ \leftrightsquigarrow, \ \ldots$"}
  51.  
  52.  
  53. def doall():
  54. # Colors used in mpl online documentation.
  55. mpl_blue_rvb = (191./255., 209./256., 212./255.)
  56. mpl_orange_rvb = (202/255., 121/256., 0./255.)
  57. mpl_grey_rvb = (51./255., 51./255., 51./255.)
  58.  
  59. # Creating figure and axis.
  60. plt.figure(figsize=(6, 7))
  61. plt.axes([0.01, 0.01, 0.98, 0.90], axisbg="white", frameon=True)
  62. plt.gca().set_xlim(0., 1.)
  63. plt.gca().set_ylim(0., 1.)
  64. plt.gca().set_title("Matplotlib's math rendering engine",
  65. color=mpl_grey_rvb, fontsize=14, weight='bold')
  66. plt.gca().set_xticklabels("", visible=False)
  67. plt.gca().set_yticklabels("", visible=False)
  68.  
  69. # Gap between lines in axes coords
  70. line_axesfrac = (1. / (n_lines))
  71.  
  72. # Plotting header demonstration formula
  73. full_demo = mathext_demos[0]
  74. plt.annotate(full_demo,
  75. xy=(0.5, 1. - 0.59*line_axesfrac),
  76. xycoords='data', color=mpl_orange_rvb, ha='center',
  77. fontsize=20)
  78.  
  79. # Plotting features demonstration formulae
  80. for i_line in range(1, n_lines):
  81. baseline = 1. - (i_line)*line_axesfrac
  82. baseline_next = baseline - line_axesfrac*1.
  83. title = mathtext_titles[i_line] + ":"
  84. fill_color = ['white', mpl_blue_rvb][i_line % 2]
  85. plt.fill_between([0., 1.], [baseline, baseline],
  86. [baseline_next, baseline_next],
  87. color=fill_color, alpha=0.5)
  88. plt.annotate(title,
  89. xy=(0.07, baseline - 0.3*line_axesfrac),
  90. xycoords='data', color=mpl_grey_rvb, weight='bold')
  91. demo = mathext_demos[i_line]
  92. plt.annotate(demo,
  93. xy=(0.05, baseline - 0.75*line_axesfrac),
  94. xycoords='data', color=mpl_grey_rvb,
  95. fontsize=16)
  96.  
  97. for i in range(n_lines):
  98. s = mathext_demos[i]
  99. print(i, s)
  100. plt.show()
  101.  
  102. if '--latex' in sys.argv:
  103. # Run: python mathtext_examples.py --latex
  104. # Need amsmath and amssymb packages.
  105. fd = open("mathtext_examples.ltx", "w")
  106. fd.write("\\documentclass{article}\n")
  107. fd.write("\\usepackage{amsmath, amssymb}\n")
  108. fd.write("\\begin{document}\n")
  109. fd.write("\\begin{enumerate}\n")
  110.  
  111. for i in range(n_lines):
  112. s = mathext_demos[i]
  113. s = re.sub(r"(?<!\\)\$", "$$", s)
  114. fd.write("\\item %s\n" % s)
  115.  
  116. fd.write("\\end{enumerate}\n")
  117. fd.write("\\end{document}\n")
  118. fd.close()
  119.  
  120. os.system("pdflatex mathtext_examples.ltx")
  121. else:
  122. doall()
0 $W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$
1 $\alpha_i > \beta_i,\ \alpha_{i+1}^j = {\rm sin}(2\pi f_j t_i) e^{-5 t_i/\tau},\ \ldots$
2 $\frac{3}{4},\ \binom{3}{4},\ \stackrel{3}{4},\ \left(\frac{5 - \frac{1}{x}}{4}\right),\ \ldots$
3 $\sqrt{2},\ \sqrt[3]{x},\ \ldots$
4 $\mathrm{Roman}\ , \ \mathit{Italic}\ , \ \mathtt{Typewriter} \ \mathrm{or}\ \mathcal{CALLIGRAPHY}$
5 $\acute a,\ \bar a,\ \breve a,\ \dot a,\ \ddot a, \ \grave a, \ \hat a,\ \tilde a,\ \vec a,\ \widehat{xyz},\ \widetilde{xyz},\ \ldots$
6 $\alpha,\ \beta,\ \chi,\ \delta,\ \lambda,\ \mu,\ \Delta,\ \Gamma,\ \Omega,\ \Phi,\ \Pi,\ \Upsilon,\ \nabla,\ \aleph,\ \beth,\ \daleth,\ \gimel,\ \ldots$
7 $\coprod,\ \int,\ \oint,\ \prod,\ \sum,\ \log,\ \sin,\ \approx,\ \oplus,\ \star,\ \varpropto,\ \infty,\ \partial,\ \Re,\ \leftrightsquigarrow, \ \ldots$

06.10 各种绘图实例 - 图21

原文: https://nbviewer.jupyter.org/github/lijin-THU/notes-python/blob/master/06-matplotlib/06.10-different-plots.ipynb