曲线拟合
导入基础包:
In [1]:
- import numpy as np
- import matplotlib as mpl
- import matplotlib.pyplot as plt
多项式拟合
导入线多项式拟合工具:
In [2]:
- from numpy import polyfit, poly1d
产生数据:
In [3]:
- x = np.linspace(-5, 5, 100)
- y = 4 * x + 1.5
- noise_y = y + np.random.randn(y.shape[-1]) * 2.5
画出数据:
In [4]:
- %matplotlib inline
- p = plt.plot(x, noise_y, 'rx')
- p = plt.plot(x, y, 'b:')
进行线性拟合,polyfit
是多项式拟合函数,线性拟合即一阶多项式:
In [5]:
- coeff = polyfit(x, noise_y, 1)
- print coeff
- [ 3.93921315 1.59379469]
一阶多项式 $y = a_1 x + a_0$ 拟合,返回两个系数 $[a_1, a_0]$。
画出拟合曲线:
In [6]:
- p = plt.plot(x, noise_y, 'rx')
- p = plt.plot(x, coeff[0] * x + coeff[1], 'k-')
- p = plt.plot(x, y, 'b--')
还可以用 poly1d
生成一个以传入的 coeff
为参数的多项式函数:
In [7]:
- f = poly1d(coeff)
- p = plt.plot(x, noise_y, 'rx')
- p = plt.plot(x, f(x))
In [8]:
- f
Out[8]:
- poly1d([ 3.93921315, 1.59379469])
显示 f
:
In [9]:
- print f
- 3.939 x + 1.594
还可以对它进行数学操作生成新的多项式:
In [10]:
- print f + 2 * f ** 2
- 2
- 31.03 x + 29.05 x + 6.674
多项式拟合正弦函数
正弦函数:
In [11]:
- x = np.linspace(-np.pi,np.pi,100)
- y = np.sin(x)
用一阶到九阶多项式拟合,类似泰勒展开:
In [12]:
- y1 = poly1d(polyfit(x,y,1))
- y3 = poly1d(polyfit(x,y,3))
- y5 = poly1d(polyfit(x,y,5))
- y7 = poly1d(polyfit(x,y,7))
- y9 = poly1d(polyfit(x,y,9))
In [13]:
- x = np.linspace(-3 * np.pi,3 * np.pi,100)
- p = plt.plot(x, np.sin(x), 'k')
- p = plt.plot(x, y1(x))
- p = plt.plot(x, y3(x))
- p = plt.plot(x, y5(x))
- p = plt.plot(x, y7(x))
- p = plt.plot(x, y9(x))
- a = plt.axis([-3 * np.pi, 3 * np.pi, -1.25, 1.25])
黑色为原始的图形,可以看到,随着多项式拟合的阶数的增加,曲线与拟合数据的吻合程度在逐渐增大。
最小二乘拟合
导入相关的模块:
In [14]:
- from scipy.linalg import lstsq
- from scipy.stats import linregress
In [15]:
- x = np.linspace(0,5,100)
- y = 0.5 * x + np.random.randn(x.shape[-1]) * 0.35
- plt.plot(x,y,'x')
Out[15]:
- [<matplotlib.lines.Line2D at 0xbc98518>]
一般来书,当我们使用一个 N-1 阶的多项式拟合这 M 个点时,有这样的关系存在:
XC = Y
即
\left[ \begin{matrix}x0^{N-1} & \dots & x_0 & 1 \\x_1^{N-1} & \dots & x_1 & 1 \\dots & \dots & \dots & \dots \\x_M^{N-1} & \dots & x_M & 1\end{matrix}\right] \left[ \begin{matrix} C{N-1} \\ \dots \\ C_1 \\ C_0 \end{matrix} \right] =\left[ \begin{matrix} y_0 \\ y_1 \\ \dots \\ y_M \end{matrix} \right]
Scipy.linalg.lstsq 最小二乘解
要得到 C
,可以使用 scipy.linalg.lstsq
求最小二乘解。
这里,我们使用 1 阶多项式即 N = 2
,先将 x
扩展成 X
:
In [16]:
- X = np.hstack((x[:,np.newaxis], np.ones((x.shape[-1],1))))
- X[1:5]
Out[16]:
- array([[ 0.05050505, 1. ],
- [ 0.1010101 , 1. ],
- [ 0.15151515, 1. ],
- [ 0.2020202 , 1. ]])
求解:
In [17]:
- C, resid, rank, s = lstsq(X, y)
- C, resid, rank, s
Out[17]:
- (array([ 0.50432002, 0.0415695 ]),
- 12.182942535066523,
- 2,
- array([ 30.23732043, 4.82146667]))
画图:
In [18]:
- p = plt.plot(x, y, 'rx')
- p = plt.plot(x, C[0] * x + C[1], 'k--')
- print "sum squared residual = {:.3f}".format(resid)
- print "rank of the X matrix = {}".format(rank)
- print "singular values of X = {}".format(s)
- sum squared residual = 12.183
- rank of the X matrix = 2
- singular values of X = [ 30.23732043 4.82146667]
Scipy.stats.linregress 线性回归
对于上面的问题,还可以使用线性回归进行求解:
In [19]:
- slope, intercept, r_value, p_value, stderr = linregress(x, y)
- slope, intercept
Out[19]:
- (0.50432001884393252, 0.041569499438028901)
In [20]:
- p = plt.plot(x, y, 'rx')
- p = plt.plot(x, slope * x + intercept, 'k--')
- print "R-value = {:.3f}".format(r_value)
- print "p-value (probability there is no correlation) = {:.3e}".format(p_value)
- print "Root mean squared error of the fit = {:.3f}".format(np.sqrt(stderr))
- R-value = 0.903
- p-value (probability there is no correlation) = 8.225e-38
- Root mean squared error of the fit = 0.156
可以看到,两者求解的结果是一致的,但是出发的角度是不同的。
更高级的拟合
In [21]:
- from scipy.optimize import leastsq
先定义这个非线性函数:$y = a e^{-b sin( f x + \phi)}$
In [22]:
- def function(x, a , b, f, phi):
- """a function of x with four parameters"""
- result = a * np.exp(-b * np.sin(f * x + phi))
- return result
画出原始曲线:
In [23]:
- x = np.linspace(0, 2 * np.pi, 50)
- actual_parameters = [3, 2, 1.25, np.pi / 4]
- y = function(x, *actual_parameters)
- p = plt.plot(x,y)
加入噪声:
In [24]:
- from scipy.stats import norm
- y_noisy = y + 0.8 * norm.rvs(size=len(x))
- p = plt.plot(x, y, 'k-')
- p = plt.plot(x, y_noisy, 'rx')
Scipy.optimize.leastsq
定义误差函数,将要优化的参数放在前面:
In [25]:
- def f_err(p, y, x):
- return y - function(x, *p)
将这个函数作为参数传入 leastsq
函数,第二个参数为初始值:
In [26]:
- c, ret_val = leastsq(f_err, [1, 1, 1, 1], args=(y_noisy, x))
- c, ret_val
Out[26]:
- (array([ 3.03199715, 1.97689384, 1.30083191, 0.6393337 ]), 1)
ret_val
是 1~4 时,表示成功找到最小二乘解:
In [27]:
- p = plt.plot(x, y_noisy, 'rx')
- p = plt.plot(x, function(x, *c), 'k--')
Scipy.optimize.curve_fit
更高级的做法:
In [28]:
- from scipy.optimize import curve_fit
不需要定义误差函数,直接传入 function
作为参数:
In [29]:
- p_est, err_est = curve_fit(function, x, y_noisy)
In [30]:
- print p_est
- p = plt.plot(x, y_noisy, "rx")
- p = plt.plot(x, function(x, *p_est), "k--")
- [ 3.03199711 1.97689385 1.3008319 0.63933373]
这里第一个返回的是函数的参数,第二个返回值为各个参数的协方差矩阵:
In [31]:
- print err_est
- [[ 0.08483704 -0.02782318 0.00967093 -0.03029038]
- [-0.02782318 0.00933216 -0.00305158 0.00955794]
- [ 0.00967093 -0.00305158 0.0014972 -0.00468919]
- [-0.03029038 0.00955794 -0.00468919 0.01484297]]
协方差矩阵的对角线为各个参数的方差:
In [32]:
- print "normalized relative errors for each parameter"
- print " a\t b\t f\tphi"
- print np.sqrt(err_est.diagonal()) / p_est
- normalized relative errors for each parameter
- a b f phi
- [ 0.09606473 0.0488661 0.02974528 0.19056043]