接口
在 Python
中,鸭子类型(duck typing
)是一种动态类型的风格。所谓鸭子类型,来自于 James Whitcomb Riley
的“鸭子测试”:
当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。
假设我们需要定义一个函数,这个函数使用一个类型为鸭子的参数,并调用它的走和叫方法。
在鸭子类型的语言中,这样的函数可以接受任何类型的对象,只要这个对象实现了走和叫的方法,否则就引发一个运行时错误。换句话说,任何拥有走和叫方法的参数都是合法的。
先看一个例子,父类:
In [1]:
- class Leaf(object):
- def __init__(self, color="green"):
- self.color = color
- def fall(self):
- print "Splat!"
子类:
In [2]:
- class MapleLeaf(Leaf):
- def fall(self):
- self.color = 'brown'
- super(MapleLeaf, self).fall()
新的类:
In [3]:
- class Acorn(object):
- def fall(self):
- print "Plunk!"
这三个类都实现了 fall()
方法,因此可以这样使用:
In [4]:
- objects = [Leaf(), MapleLeaf(), Acorn()]
- for obj in objects:
- obj.fall()
- Splat!
- Splat!
- Plunk!
这里 fall()
方法就一种鸭子类型的体现。
不仅方法可以用鸭子类型,属性也可以:
In [5]:
- import numpy as np
- from scipy.ndimage.measurements import label
- class Forest(object):
- """ Forest can grow trees which eventually die."""
- def __init__(self, size=(150,150), p_sapling=0.0025):
- self.size = size
- self.trees = np.zeros(self.size, dtype=bool)
- self.p_sapling = p_sapling
- def __repr__(self):
- my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
- return my_repr
- def __str__(self):
- return self.__class__.__name__
- @property
- def num_cells(self):
- """Number of cells available for growing trees"""
- return np.prod(self.size)
- @property
- def losses(self):
- return np.zeros(self.size)
- @property
- def tree_fraction(self):
- """
- Fraction of trees
- """
- num_trees = self.trees.sum()
- return float(num_trees) / self.num_cells
- def _rand_bool(self, p):
- """
- Random boolean distributed according to p, less than p will be True
- """
- return np.random.uniform(size=self.trees.shape) < p
- def grow_trees(self):
- """
- Growing trees.
- """
- growth_sites = self._rand_bool(self.p_sapling)
- self.trees[growth_sites] = True
- def advance_one_step(self):
- """
- Advance one step
- """
- self.grow_trees()
- class BurnableForest(Forest):
- """
- Burnable forest support fires
- """
- def __init__(self, p_lightning=5.0e-6, **kwargs):
- super(BurnableForest, self).__init__(**kwargs)
- self.p_lightning = p_lightning
- self.fires = np.zeros((self.size), dtype=bool)
- def advance_one_step(self):
- """
- Advance one step
- """
- super(BurnableForest, self).advance_one_step()
- self.start_fires()
- self.burn_trees()
- @property
- def losses(self):
- return self.fires
- @property
- def fire_fraction(self):
- """
- Fraction of fires
- """
- num_fires = self.fires.sum()
- return float(num_fires) / self.num_cells
- def start_fires(self):
- """
- Start of fire.
- """
- lightning_strikes = (self._rand_bool(self.p_lightning) &
- self.trees)
- self.fires[lightning_strikes] = True
- def burn_trees(self):
- pass
- class SlowBurnForest(BurnableForest):
- def burn_trees(self):
- """
- Burn trees.
- """
- fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
- fires[1:-1, 1:-1] = self.fires
- north = fires[:-2, 1:-1]
- south = fires[2:, 1:-1]
- east = fires[1:-1, :-2]
- west = fires[1:-1, 2:]
- new_fires = (north | south | east | west) & self.trees
- self.trees[self.fires] = False
- self.fires = new_fires
- class InstantBurnForest(BurnableForest):
- def burn_trees(self):
- # 起火点
- strikes = self.fires
- # 找到连通区域
- groves, num_groves = label(self.trees)
- fires = set(groves[strikes])
- self.fires.fill(False)
- # 将与着火点相连的区域都烧掉
- for fire in fires:
- self.fires[groves == fire] = True
- self.trees[self.fires] = False
- self.fires.fill(False)
测试:
In [6]:
- forest = Forest()
- b_forest = BurnableForest()
- sb_forest = SlowBurnForest()
- ib_forest = InstantBurnForest()
- forests = [forest, b_forest, sb_forest, ib_forest]
- losses_history = []
- for i in xrange(1500):
- for fst in forests:
- fst.advance_one_step()
- losses_history.append(tuple(fst.losses.sum() for fst in forests))
显示结果:
In [7]:
- import matplotlib.pyplot as plt
- %matplotlib inline
- plt.figure(figsize=(10,6))
- plt.plot(losses_history)
- plt.legend([f.__str__() for f in forests])
- plt.show()