Statistical analysis framework for performing basic statistical analysis of data. The data is analysed in a single pass, when it is pushed to a RunningStat or RunningRegress object.
RunningStat calculates for a single data set
- n (data count)
- min (smallest value)
- max (largest value)
- sum
- mean
- variance
- varianceS (sample variance)
- standardDeviation
- standardDeviationS (sample standard deviation)
- skewness (the third statistical moment)
- kurtosis (the fourth statistical moment)
RunningRegress calculates for two sets of data
- n (data count)
- slope
- intercept
- correlation
Procs are provided to calculate statistics on openArrays.
However, if more than a single statistical calculation is required, it is more efficient to push the data once to a RunningStat object and then call the numerous statistical procs for the RunningStat object:
Example:
import std/stats
from std/math import almostEqual
template `~=`(a, b: float): bool = almostEqual(a, b)
var statistics: RunningStat # must be var
statistics.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
doAssert statistics.n == 8
doAssert statistics.mean() ~= 2.0
doAssert statistics.variance() ~= 1.5
doAssert statistics.varianceS() ~= 1.714285714285715
doAssert statistics.skewness() ~= 0.8164965809277261
doAssert statistics.skewnessS() ~= 1.018350154434631
doAssert statistics.kurtosis() ~= -1.0
doAssert statistics.kurtosisS() ~= -0.7000000000000008
Imports
Types
RunningRegress = object
n*: int ## amount of pushed data
x_stats*: RunningStat ## stats for the first set of data
y_stats*: RunningStat ## stats for the second set of data
## accumulated data for combined xy
An accumulator for regression calculations. Source Edit
RunningStat = object
n*: int ## amount of pushed data
min*, max*, sum*: float ## self-explaining
## statistical moments, mom1 is mean
An accumulator for statistical data. Source Edit
Procs
proc `$`(a: RunningStat): string {....raises: [], tags: [], forbids: [].}
Produces a string representation of the RunningStat. The exact format is currently unspecified and subject to change. Currently it contains:
- the number of probes
- min, max values
- sum, mean and standard deviation.
proc `+`(a, b: RunningRegress): RunningRegress {....raises: [], tags: [],
forbids: [].}
Combines two RunningRegress objects.
Useful when performing parallel analysis of data series and needing to re-combine parallel result sets
proc `+`(a, b: RunningStat): RunningStat {....raises: [], tags: [], forbids: [].}
Combines two RunningStats.
Useful when performing parallel analysis of data series and needing to re-combine parallel result sets.
proc `+=`(a: var RunningRegress; b: RunningRegress) {....raises: [], tags: [],
forbids: [].}
Adds the RunningRegress b to a. Source Edit
proc `+=`(a: var RunningStat; b: RunningStat) {.inline, ...raises: [], tags: [],
forbids: [].}
Adds the RunningStat b to a. Source Edit
proc clear(r: var RunningRegress) {....raises: [], tags: [], forbids: [].}
proc clear(s: var RunningStat) {....raises: [], tags: [], forbids: [].}
proc correlation(r: RunningRegress): float {....raises: [], tags: [], forbids: [].}
Computes the current correlation of the two data sets pushed into r. Source Edit
proc intercept(r: RunningRegress): float {....raises: [], tags: [], forbids: [].}
Computes the current intercept of r. Source Edit
proc kurtosis(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current population kurtosis of s. Source Edit
proc kurtosis[T](x: openArray[T]): float
Computes the population kurtosis of x. Source Edit
proc kurtosisS(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current sample kurtosis of s. Source Edit
proc kurtosisS[T](x: openArray[T]): float
Computes the sample kurtosis of x. Source Edit
proc mean(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current mean of s. Source Edit
proc mean[T](x: openArray[T]): float
Computes the mean of x. Source Edit
proc push(r: var RunningRegress; x, y: float) {....raises: [], tags: [],
forbids: [].}
Pushes two values x and y for processing. Source Edit
proc push(r: var RunningRegress; x, y: int) {.inline, ...raises: [], tags: [],
forbids: [].}
Pushes two values x and y for processing.
x and y are converted to float and the other push operation is called.
proc push(r: var RunningRegress; x, y: openArray[float | int])
Pushes two sets of values x and y for processing. Source Edit
proc push(s: var RunningStat; x: float) {....raises: [], tags: [], forbids: [].}
Pushes a value x for processing. Source Edit
proc push(s: var RunningStat; x: int) {....raises: [], tags: [], forbids: [].}
Pushes a value x for processing.
x is simply converted to float and the other push operation is called.
proc push(s: var RunningStat; x: openArray[float | int])
Pushes all values of x for processing.
Int values of x are simply converted to float and the other push operation is called.
proc skewness(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current population skewness of s. Source Edit
proc skewness[T](x: openArray[T]): float
Computes the population skewness of x. Source Edit
proc skewnessS(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current sample skewness of s. Source Edit
proc skewnessS[T](x: openArray[T]): float
Computes the sample skewness of x. Source Edit
proc slope(r: RunningRegress): float {....raises: [], tags: [], forbids: [].}
Computes the current slope of r. Source Edit
proc standardDeviation(s: RunningStat): float {....raises: [], tags: [],
forbids: [].}
Computes the current population standard deviation of s. Source Edit
proc standardDeviation[T](x: openArray[T]): float
Computes the population standard deviation of x. Source Edit
proc standardDeviationS(s: RunningStat): float {....raises: [], tags: [],
forbids: [].}
Computes the current sample standard deviation of s. Source Edit
proc standardDeviationS[T](x: openArray[T]): float
Computes the sample standard deviation of x. Source Edit
proc variance(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current population variance of s. Source Edit
proc variance[T](x: openArray[T]): float
Computes the population variance of x. Source Edit
proc varianceS(s: RunningStat): float {....raises: [], tags: [], forbids: [].}
Computes the current sample variance of s. Source Edit
proc varianceS[T](x: openArray[T]): float