Constructive mathematics is naturally typed. — Simon Thompson
Basic math routines for Nim.
Note that the trigonometric functions naturally operate on radians. The helper functions degToRad and radToDeg provide conversion between radians and degrees.
Example:
import std/math
from std/fenv import epsilon
from std/random import rand
proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
# Generates values from a normal distribution.
# Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
var u1: float
var u2: float
while true:
u1 = rand(1.0)
u2 = rand(1.0)
if u1 > epsilon(float): break
let mag = sigma * sqrt(-2 * ln(u1))
let z0 = mag * cos(2 * PI * u2) + mu
let z1 = mag * sin(2 * PI * u2) + mu
(z0, z1)
echo generateGaussianNoise()
This module is available for the JavaScript target.
See also
- complex module for complex numbers and their mathematical operations
- rationals module for rational numbers and their mathematical operations
- fenv module for handling of floating-point rounding and exceptions (overflow, zero-divide, etc.)
- random module for a fast and tiny random number generator
- stats module for statistical analysis
- strformat module for formatting floats for printing
- system module for some very basic and trivial math operators (shr, shl, xor, clamp, etc.)
Imports
Types
FloatClass = enum
fcNormal, ## value is an ordinary nonzero floating point value
fcSubnormal, ## value is a subnormal (a very small) floating point value
fcZero, ## value is zero
fcNegZero, ## value is the negative zero
fcNan, ## value is Not a Number (NaN)
fcInf, ## value is positive infinity
fcNegInf ## value is negative infinity
Describes the class a floating point value belongs to. This is the type that is returned by the classify func. Source Edit
Consts
E = 2.718281828459045
MaxFloat32Precision = 8
Maximum number of meaningful digits after the decimal point for Nim’s float32 type. Source Edit
MaxFloat64Precision = 16
Maximum number of meaningful digits after the decimal point for Nim’s float64 type. Source Edit
MaxFloatPrecision = 16
Maximum number of meaningful digits after the decimal point for Nim’s float type. Source Edit
MinFloatNormal = 2.225073858507201e-308
Smallest normal number for Nim’s float type (= 2^-1022). Source Edit
PI = 3.141592653589793
The circle constant PI (Ludolph’s number). Source Edit
TAU = 6.283185307179586
The circle constant TAU (= 2 * PI). Source Edit
Procs
func `^`[T: SomeNumber](x: T; y: Natural): T
Computes x to the power of y.
The exponent y must be non-negative, use pow for negative exponents.
See also:
Example:
doAssert -3 ^ 0 == 1
doAssert -3 ^ 1 == -3
doAssert -3 ^ 2 == 9
func almostEqual[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
inline.}
Checks if two float values are almost equal, using the machine epsilon.
unitsInLastPlace is the max number of units in the last place difference tolerated when comparing two numbers. The larger the value, the more error is allowed. A 0 value means that two numbers must be exactly the same to be considered equal.
The machine epsilon has to be scaled to the magnitude of the values used and multiplied by the desired precision in ULPs unless the difference is subnormal.
Example:
doAssert almostEqual(PI, 3.14159265358979)
doAssert almostEqual(Inf, Inf)
doAssert not almostEqual(NaN, NaN)
func arccos(x: float32): float32 {.importc: "acosf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arccos(x: float64): float64 {.importc: "acos", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the arc cosine of x.
See also:
Example:
doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
func arccosh(x: float32): float32 {.importc: "acoshf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arccosh(x: float64): float64 {.importc: "acosh", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the inverse hyperbolic cosine of x.
See also:
func arccot[T: float32 | float64](x: T): T
Computes the inverse cotangent of x (arctan(1/x)). Source Edit
func arccoth[T: float32 | float64](x: T): T
Computes the inverse hyperbolic cotangent of x (arctanh(1/x)). Source Edit
func arccsc[T: float32 | float64](x: T): T
Computes the inverse cosecant of x (arcsin(1/x)). Source Edit
func arccsch[T: float32 | float64](x: T): T
Computes the inverse hyperbolic cosecant of x (arcsinh(1/x)). Source Edit
func arcsec[T: float32 | float64](x: T): T
Computes the inverse secant of x (arccos(1/x)). Source Edit
func arcsech[T: float32 | float64](x: T): T
Computes the inverse hyperbolic secant of x (arccosh(1/x)). Source Edit
func arcsin(x: float32): float32 {.importc: "asinf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arcsin(x: float64): float64 {.importc: "asin", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the arc sine of x.
See also:
Example:
doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
func arcsinh(x: float32): float32 {.importc: "asinhf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arcsinh(x: float64): float64 {.importc: "asinh", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the inverse hyperbolic sine of x.
See also:
func arctan(x: float32): float32 {.importc: "atanf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arctan(x: float64): float64 {.importc: "atan", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Calculate the arc tangent of x.
See also:
Example:
doAssert almostEqual(arctan(1.0), 0.7853981633974483)
doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
func arctan2(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arctan2(y, x: float64): float64 {.importc: "atan2", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Calculate the arc tangent of y/x.
It produces correct results even when the resulting angle is near PI/2 or -PI/2 (x near 0).
See also:
Example:
doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
func arctanh(x: float32): float32 {.importc: "atanhf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func arctanh(x: float64): float64 {.importc: "atanh", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the inverse hyperbolic tangent of x.
See also:
func binom(n, k: int): int {....raises: [], tags: [], forbids: [].}
Computes the binomial coefficient.
Example:
doAssert binom(6, 2) == 15
doAssert binom(-6, 2) == 1
doAssert binom(6, 0) == 1
func cbrt(x: float32): float32 {.importc: "cbrtf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func cbrt(x: float64): float64 {.importc: "cbrt", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the cube root of x.
See also:
- sqrt func for the square root
Example:
doAssert almostEqual(cbrt(8.0), 2.0)
doAssert almostEqual(cbrt(2.197), 1.3)
doAssert almostEqual(cbrt(-27.0), -3.0)
func ceil(x: float32): float32 {.importc: "ceilf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func ceil(x: float64): float64 {.importc: "ceil", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the ceiling function (i.e. the smallest integer not smaller than x).
See also:
Example:
doAssert ceil(2.1) == 3.0
doAssert ceil(2.9) == 3.0
doAssert ceil(-2.1) == -2.0
func ceilDiv[T: SomeInteger](x, y: T): T {.inline.}
Ceil division is conceptually defined as ceil(x / y).
Assumes x >= 0 and y > 0 (and x + y - 1 <= high(T) if T is SomeUnsignedInt).
This is different from the system.div operator, which works like trunc(x / y). That is, div rounds towards 0 and ceilDiv rounds up.
This function has the above input limitation, because that allows the compiler to generate faster code and it is rarely used with negative values or unsigned integers close to high(T)/2. If you need a ceilDiv that works with any input, see: https://github.com/demotomohiro/divmath.
See also:
- system.div proc for integer division
- floorDiv func for integer division which rounds down.
Example:
assert ceilDiv(12, 3) == 4
assert ceilDiv(13, 3) == 5
func clamp[T](val: T; bounds: Slice[T]): T {.inline.}
Like system.clamp, but takes a slice, so you can easily clamp within a range.
Example:
assert clamp(10, 1 .. 5) == 5
assert clamp(1, 1 .. 3) == 1
type A = enum a0, a1, a2, a3, a4, a5
assert a1.clamp(a2..a4) == a2
assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
func classify(x: float): FloatClass {....raises: [], tags: [], forbids: [].}
Classifies a floating point value.
Returns x’s class as specified by the FloatClass enum.
Example:
doAssert classify(0.3) == fcNormal
doAssert classify(0.0) == fcZero
doAssert classify(0.3 / 0.0) == fcInf
doAssert classify(-0.3 / 0.0) == fcNegInf
doAssert classify(5.0e-324) == fcSubnormal
func copySign[T: SomeFloat](x, y: T): T {.inline.}
Returns a value with the magnitude of x and the sign of y; this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
Example:
doAssert copySign(10.0, 1.0) == 10.0
doAssert copySign(10.0, -1.0) == -10.0
doAssert copySign(-Inf, -0.0) == -Inf
doAssert copySign(NaN, 1.0).isNaN
doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
func cos(x: float32): float32 {.importc: "cosf", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
func cos(x: float64): float64 {.importc: "cos", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
Computes the cosine of x.
See also:
Example:
doAssert almostEqual(cos(2 * PI), 1.0)
doAssert almostEqual(cos(degToRad(60.0)), 0.5)
func cosh(x: float32): float32 {.importc: "coshf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func cosh(x: float64): float64 {.importc: "cosh", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the hyperbolic cosine of x.
See also:
Example:
doAssert almostEqual(cosh(0.0), 1.0)
doAssert almostEqual(cosh(1.0), 1.543080634815244)
func cot[T: float32 | float64](x: T): T
Computes the cotangent of x (1/tan(x)). Source Edit
func coth[T: float32 | float64](x: T): T
Computes the hyperbolic cotangent of x (1/tanh(x)). Source Edit
func csc[T: float32 | float64](x: T): T
Computes the cosecant of x (1/sin(x)). Source Edit
func csch[T: float32 | float64](x: T): T
Computes the hyperbolic cosecant of x (1/sinh(x)). Source Edit
func cumsum[T](x: var openArray[T])
Transforms x in-place (must be declared as var) into its cumulative (aka prefix) summation.
See also:
- sum func
- cumsummed func for a version which returns a cumsummed sequence
Example:
var a = [1, 2, 3, 4]
cumsum(a)
doAssert a == @[1, 3, 6, 10]
func cumsummed[T](x: openArray[T]): seq[T]
Returns the cumulative (aka prefix) summation of x.
If x is empty, @[] is returned.
See also:
- sum func
- cumsum func for the in-place version
Example:
doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
func degToRad[T: float32 | float64](d: T): T {.inline.}
Converts from degrees to radians.
See also:
Example:
doAssert almostEqual(degToRad(180.0), PI)
func divmod[T: SomeInteger](x, y: T): (T, T) {.inline.}
Specialized instructions for computing both division and modulus. Return structure is: (quotient, remainder)
Example:
doAssert divmod(5, 2) == (2, 1)
doAssert divmod(5, -3) == (-1, 2)
func erf(x: float32): float32 {.importc: "erff", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
func erf(x: float64): float64 {.importc: "erf", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
Computes the error function for x.
Note: Not available for the JS backend.
func erfc(x: float32): float32 {.importc: "erfcf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func erfc(x: float64): float64 {.importc: "erfc", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the complementary error function for x.
Note: Not available for the JS backend.
func euclDiv[T: SomeInteger](x, y: T): T
Returns euclidean division of x by y.
Example:
doAssert euclDiv(13, 3) == 4
doAssert euclDiv(-13, 3) == -5
doAssert euclDiv(13, -3) == -4
doAssert euclDiv(-13, -3) == 5
func euclMod[T: SomeNumber](x, y: T): T
Returns euclidean modulo of x by y. euclMod(x, y) is non-negative.
Example:
doAssert euclMod(13, 3) == 1
doAssert euclMod(-13, 3) == 2
doAssert euclMod(13, -3) == 1
doAssert euclMod(-13, -3) == 2
func exp(x: float32): float32 {.importc: "expf", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
func exp(x: float64): float64 {.importc: "exp", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
Computes the exponential function of x (e^x).
See also:
Example:
doAssert almostEqual(exp(1.0), E)
doAssert almostEqual(ln(exp(4.0)), 4.0)
doAssert almostEqual(exp(0.0), 1.0)
func fac(n: int): int {....raises: [], tags: [], forbids: [].}
Computes the factorial of a non-negative integer n.
See also:
Example:
doAssert fac(0) == 1
doAssert fac(4) == 24
doAssert fac(10) == 3628800
func floor(x: float32): float32 {.importc: "floorf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func floor(x: float64): float64 {.importc: "floor", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the floor function (i.e. the largest integer not greater than x).
See also:
Example:
doAssert floor(2.1) == 2.0
doAssert floor(2.9) == 2.0
doAssert floor(-3.5) == -4.0
func floorDiv[T: SomeInteger](x, y: T): T
Floor division is conceptually defined as floor(x / y).
This is different from the system.div operator, which is defined as trunc(x / y). That is, div rounds towards 0 and floorDiv rounds down.
See also:
- system.div proc for integer division
- floorMod func for Python-like (% operator) behavior
Example:
doAssert floorDiv( 13, 3) == 4
doAssert floorDiv(-13, 3) == -5
doAssert floorDiv( 13, -3) == -5
doAssert floorDiv(-13, -3) == 4
func floorMod[T: SomeNumber](x, y: T): T
Floor modulo is conceptually defined as x - (floorDiv(x, y) * y).
This func behaves the same as the % operator in Python.
See also:
Example:
doAssert floorMod( 13, 3) == 1
doAssert floorMod(-13, 3) == 2
doAssert floorMod( 13, -3) == -2
doAssert floorMod(-13, -3) == -1
func frexp[T: float32 | float64](x: T): tuple[frac: T, exp: int] {.inline.}
Splits x into a normalized fraction frac and an integral power of 2 exp, such that abs(frac) in 0.5..<1 and x == frac * 2 ^ exp, except for special cases shown below.
Example:
doAssert frexp(8.0) == (0.5, 4)
doAssert frexp(-8.0) == (-0.5, 4)
doAssert frexp(0.0) == (0.0, 0)
# special cases:
when sizeof(int) == 8:
doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
doAssert frexp(Inf).frac == Inf # +- Inf preserved
doAssert frexp(NaN).frac.isNaN
func frexp[T: float32 | float64](x: T; exponent: var int): T {.inline.}
Overload of frexp that calls (result, exponent) = frexp(x).
Example:
var x: int
doAssert frexp(5.0, x) == 0.625
doAssert x == 3
func gamma(x: float32): float32 {.importc: "tgammaf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func gamma(x: float64): float64 {.importc: "tgamma", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the gamma function for x.
Note: Not available for the JS backend.
See also:
- lgamma func for the natural logarithm of the gamma function
Example:
doAssert almostEqual(gamma(1.0), 1.0)
doAssert almostEqual(gamma(4.0), 6.0)
doAssert almostEqual(gamma(11.0), 3628800.0)
func gcd(x, y: SomeInteger): SomeInteger
Computes the greatest common (positive) divisor of x and y, using the binary GCD (aka Stein’s) algorithm.
See also:
Example:
doAssert gcd(12, 8) == 4
doAssert gcd(17, 63) == 1
func gcd[T](x, y: T): T
Computes the greatest common (positive) divisor of x and y.
Note that for floats, the result cannot always be interpreted as “greatest decimal z such that z*N == x and z*M == y where N and M are positive integers”.
See also:
Example:
doAssert gcd(13.5, 9.0) == 4.5
func gcd[T](x: openArray[T]): T
Computes the greatest common (positive) divisor of the elements of x.
See also:
- gcd func for a version with two arguments
Example:
doAssert gcd(@[13.5, 9.0]) == 4.5
func hypot(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func hypot(x, y: float64): float64 {.importc: "hypot", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the length of the hypotenuse of a right-angle triangle with x as its base and y as its height. Equivalent to sqrt(x*x + y*y).
Example:
doAssert almostEqual(hypot(3.0, 4.0), 5.0)
func isNaN(x: SomeFloat): bool {.inline.}
Returns whether x is a NaN, more efficiently than via classify(x) == fcNan. Works even with --passc:-ffast-math.
Example:
doAssert NaN.isNaN
doAssert not Inf.isNaN
doAssert not isNaN(3.1415926)
func isPowerOfTwo(x: int): bool {....raises: [], tags: [], forbids: [].}
Returns true, if x is a power of two, false otherwise.
Zero and negative numbers are not a power of two.
See also:
Example:
doAssert isPowerOfTwo(16)
doAssert not isPowerOfTwo(5)
doAssert not isPowerOfTwo(0)
doAssert not isPowerOfTwo(-16)
func lcm[T](x, y: T): T
Computes the least common multiple of x and y.
See also:
Example:
doAssert lcm(24, 30) == 120
doAssert lcm(13, 39) == 39
func lcm[T](x: openArray[T]): T
Computes the least common multiple of the elements of x.
See also:
- lcm func for a version with two arguments
Example:
doAssert lcm(@[24, 30]) == 120
func lgamma(x: float32): float32 {.importc: "lgammaf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func lgamma(x: float64): float64 {.importc: "lgamma", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the natural logarithm of the gamma function for x.
Note: Not available for the JS backend.
See also:
- gamma func for gamma function
func ln(x: float32): float32 {.importc: "logf", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
func ln(x: float64): float64 {.importc: "log", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
Computes the natural logarithm of x.
See also:
Example:
doAssert almostEqual(ln(exp(4.0)), 4.0)
doAssert almostEqual(ln(1.0), 0.0)
doAssert almostEqual(ln(0.0), -Inf)
doAssert ln(-7.0).isNaN
func log[T: SomeFloat](x, base: T): T
Computes the logarithm of x to base base.
See also:
Example:
doAssert almostEqual(log(9.0, 3.0), 2.0)
doAssert almostEqual(log(0.0, 2.0), -Inf)
doAssert log(-7.0, 4.0).isNaN
doAssert log(8.0, -2.0).isNaN
func log2(x: float32): float32 {.importc: "log2f", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func log2(x: float64): float64 {.importc: "log2", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the binary logarithm (base 2) of x.
See also:
Example:
doAssert almostEqual(log2(8.0), 3.0)
doAssert almostEqual(log2(1.0), 0.0)
doAssert almostEqual(log2(0.0), -Inf)
doAssert log2(-2.0).isNaN
func log10(x: float32): float32 {.importc: "log10f", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func log10(x: float64): float64 {.importc: "log10", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the common logarithm (base 10) of x.
See also:
Example:
doAssert almostEqual(log10(100.0) , 2.0)
doAssert almostEqual(log10(0.0), -Inf)
doAssert log10(-100.0).isNaN
func `mod`(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func `mod`(x, y: float64): float64 {.importc: "fmod", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the modulo operation for float values (the remainder of x divided by y).
See also:
- floorMod func for Python-like (% operator) behavior
Example:
doAssert 6.5 mod 2.5 == 1.5
doAssert -6.5 mod 2.5 == -1.5
doAssert 6.5 mod -2.5 == 1.5
doAssert -6.5 mod -2.5 == -1.5
func nextPowerOfTwo(x: int): int {....raises: [], tags: [], forbids: [].}
Returns x rounded up to the nearest power of two.
Zero and negative numbers get rounded up to 1.
See also:
Example:
doAssert nextPowerOfTwo(16) == 16
doAssert nextPowerOfTwo(5) == 8
doAssert nextPowerOfTwo(0) == 1
doAssert nextPowerOfTwo(-16) == 1
func pow(x, y: float32): float32 {.importc: "powf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func pow(x, y: float64): float64 {.importc: "pow", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes x raised to the power of y.
To compute the power between integers (e.g. 2^6), use the ^ func.
See also:
Example:
doAssert almostEqual(pow(100, 1.5), 1000.0)
doAssert almostEqual(pow(16.0, 0.5), 4.0)
func prod[T](x: openArray[T]): T
Computes the product of the elements in x.
If x is empty, 1 is returned.
See also:
Example:
doAssert prod([1, 2, 3, 4]) == 24
doAssert prod([-4, 3, 5]) == -60
func radToDeg[T: float32 | float64](d: T): T {.inline.}
Converts from radians to degrees.
See also:
Example:
doAssert almostEqual(radToDeg(2 * PI), 360.0)
func round(x: float32): float32 {.importc: "roundf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func round(x: float64): float64 {.importc: "round", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Rounds a float to zero decimal places.
Used internally by the round func when the specified number of places is 0.
See also:
- round func for rounding to the specific number of decimal places
- floor func
- ceil func
- trunc func
Example:
doAssert round(3.4) == 3.0
doAssert round(3.5) == 4.0
doAssert round(4.5) == 5.0
func round[T: float32 | float64](x: T; places: int): T
Decimal rounding on a binary floating point number.
This function is NOT reliable. Floating point numbers cannot hold non integer decimals precisely. If places is 0 (or omitted), round to the nearest integral value following normal mathematical rounding rules (e.g. round(54.5) -> 55.0). If places is greater than 0, round to the given number of decimal places, e.g. round(54.346, 2) -> 54.350000000000001421…. If places is negative, round to the left of the decimal place, e.g. round(537.345, -1) -> 540.0.
Example:
doAssert round(PI, 2) == 3.14
doAssert round(PI, 4) == 3.1416
func sec[T: float32 | float64](x: T): T
Computes the secant of x (1/cos(x)). Source Edit
func sech[T: float32 | float64](x: T): T
Computes the hyperbolic secant of x (1/cosh(x)). Source Edit
func sgn[T: SomeNumber](x: T): int {.inline.}
Sign function.
Returns:
- -1 for negative numbers and NegInf,
- 1 for positive numbers and Inf,
- 0 for positive zero, negative zero and NaN
Example:
doAssert sgn(5) == 1
doAssert sgn(0) == 0
doAssert sgn(-4.1) == -1
proc signbit(x: SomeFloat): bool {.inline.}
Returns true if x is negative, false otherwise.
Example:
doAssert not signbit(0.0)
doAssert signbit(-0.0)
doAssert signbit(-0.1)
doAssert not signbit(0.1)
func sin(x: float32): float32 {.importc: "sinf", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
func sin(x: float64): float64 {.importc: "sin", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
Computes the sine of x.
See also:
Example:
doAssert almostEqual(sin(PI / 6), 0.5)
doAssert almostEqual(sin(degToRad(90.0)), 1.0)
func sinh(x: float32): float32 {.importc: "sinhf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func sinh(x: float64): float64 {.importc: "sinh", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the hyperbolic sine of x.
See also:
Example:
doAssert almostEqual(sinh(0.0), 0.0)
doAssert almostEqual(sinh(1.0), 1.175201193643801)
func splitDecimal[T: float32 | float64](x: T): tuple[intpart: T, floatpart: T]
Breaks x into an integer and a fractional part.
Returns a tuple containing intpart and floatpart, representing the integer part and the fractional part, respectively.
Both parts have the same sign as x. Analogous to the modf function in C.
Example:
doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
func sqrt(x: float32): float32 {.importc: "sqrtf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func sqrt(x: float64): float64 {.importc: "sqrt", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the square root of x.
See also:
- cbrt func for the cube root
Example:
doAssert almostEqual(sqrt(4.0), 2.0)
doAssert almostEqual(sqrt(1.44), 1.2)
func sum[T](x: openArray[T]): T
Computes the sum of the elements in x.
If x is empty, 0 is returned.
See also:
Example:
doAssert sum([1, 2, 3, 4]) == 10
doAssert sum([-4, 3, 5]) == 4
func tan(x: float32): float32 {.importc: "tanf", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
func tan(x: float64): float64 {.importc: "tan", header: "<math.h>", ...raises: [],
tags: [], forbids: [].}
Computes the tangent of x.
See also:
Example:
doAssert almostEqual(tan(degToRad(45.0)), 1.0)
doAssert almostEqual(tan(PI / 4), 1.0)
func tanh(x: float32): float32 {.importc: "tanhf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func tanh(x: float64): float64 {.importc: "tanh", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Computes the hyperbolic tangent of x.
See also:
Example:
doAssert almostEqual(tanh(0.0), 0.0)
doAssert almostEqual(tanh(1.0), 0.7615941559557649)
func trunc(x: float32): float32 {.importc: "truncf", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
func trunc(x: float64): float64 {.importc: "trunc", header: "<math.h>",
...raises: [], tags: [], forbids: [].}
Truncates x to the decimal point.
See also:
Example:
doAssert trunc(PI) == 3.0
doAssert trunc(-1.85) == -1.0