Set type
The set type models the mathematical notion of a set. The set’s basetype can only be an ordinal type of a certain size, namely:
- int8-int16
- uint8/byte-uint16
- char
- enum
or equivalent. For signed integers the set’s base type is defined to be in the range 0 .. MaxSetElements-1 where MaxSetElements is currently always 2^16.
The reason is that sets are implemented as high performance bit vectors. Attempting to declare a set with a larger type will result in an error:
var s: set[int64] # Error: set is too large
Sets can be constructed via the set constructor: {} is the empty set. The empty set is type compatible with any concrete set type. The constructor can also be used to include elements (and ranges of elements):
type
CharSet = set[char]
var
x: CharSet
x = {'a'..'z', '0'..'9'} # This constructs a set that contains the
# letters from 'a' to 'z' and the digits
# from '0' to '9'
These operations are supported by sets:
operation | meaning |
---|---|
A + B | union of two sets |
A * B | intersection of two sets |
A - B | difference of two sets (A without B’s elements) |
A == B | set equality |
A <= B | subset relation (A is subset of B or equal to B) |
A < B | strict subset relation (A is a proper subset of B) |
e in A | set membership (A contains element e) |
e notin A | A does not contain element e |
contains(A, e) | A contains element e |
card(A) | the cardinality of A (number of elements in A) |
incl(A, elem) | same as A = A + {elem} |
excl(A, elem) | same as A = A - {elem} |
Bit fields
Sets are often used to define a type for the flags of a procedure. This is a cleaner (and type safe) solution than defining integer constants that have to be or’ed together.
Enum, sets and casting can be used together as in:
type
MyFlag* {.size: sizeof(cint).} = enum
A
B
C
D
MyFlags = set[MyFlag]
proc toNum(f: MyFlags): int = cast[cint](f)
proc toFlags(v: int): MyFlags = cast[MyFlags](v)
assert toNum({}) == 0
assert toNum({A}) == 1
assert toNum({D}) == 8
assert toNum({A, C}) == 5
assert toFlags(0) == {}
assert toFlags(7) == {A, B, C}
Note how the set turns enum values into powers of 2.
If using enums and sets with C, use distinct cint.
For interoperability with C see also the bitsize pragma.