Jupyter Setup
To run Spark within Jupyter we recommend using the Toree kernel.We are going to assume you already have the following installed:
- Python 2.x
- PIP
- Docker (required to install Toree)
Install Jupyter
virtualenv venv
source ./venv/bin/activate
pip install jupyter
Build and install Toree
Clone master into your working directory from Toree’s github repo.
For this next step, you’ll need to make sure that docker is running.
cd incubator-toree
make release
cd dist/toree-pip
pip install .
SPARK_HOME=<path to spark> jupyter toree install
Launch Notebook with MLeap for Spark
The most error-proof way to add mleap to your project is to modify the kernel directly (or create a new one for Toree and Spark 2.0).
Kernel config files are typically located in /usr/local/share/jupyter/kernels/apache_toree_scala/kernel.json
Go ahead and add or modify __TOREE_SPARK_OPTS__
like so:
"__TOREE_SPARK_OPTS__": "--packages com.databricks:spark-avro_2.11:3.0.1,ml.combust.mleap:mleap-spark_2.11:0.14.0,"
An alternative way is to use AddDeps Magics, but we’ve run into dependency collisions, so do so at your own risk:
%AddDeps ml.combust.mleap mleap-spark_2.11 0.14.0 --transitive
Launch Notebook with MLeap for PySpark
First go through the steps above for launching a notebook with MLeap for Spark, then add the following to PYTHONPATH
"PYTHONPATH": "/usr/local/spark-2.0.0-bin-hadoop2.7/python:/usr/local/spark-2.0.0-bin-hadoop2.7/python/lib/py4j-0.10.1-src.zip:/<git directory>/combust/combust-mleap/python",
Launch Notebook with MLeap for Scikit-Learn
No need to modify the kernel.json
directly, just instantiate the libraries like described here.