Basic Usage
MLeap Runtime is a lightweight, yet highly optimized, execution engine for Machine Learning Pipelines. The goal of MLeap Runtime is to provide production-level serving/scoring infrastructure for common machine learning frameworks, without the dependency on their core libraries. Meaning:
- Execute Spark ML Pipelines without the dependency on the spark context, distributed data frames, and costly execution plans
- Execute Scikit-learn pipelines without the dependency on numpy, pandas, scipy or other libraries used in training
MLeap aims to be as simple as possible to use, and here are our design principles:
- Use monadic programming as much as possible
- Stay clean with automatic resource management
- Report useful errors
- Make operations on leap frames and transformers as natural and simpleas possible
A lot of magic goes into making the API user-friendly, but you don’thave to worry about any of it unless you want to.
Let’s start off with some basic usage of MLeap, like creating a leapframe, modifying it, and finally using transformers and pipelines forfull-fledged ML pipeline transformations.
当前内容版权归 combust.ml 或其关联方所有,如需对内容或内容相关联开源项目进行关注与资助,请访问 combust.ml .