Varying regularization in Multi-layer Perceptron

http://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html#sphx-glr-auto-examples-neural-networks-plot-mlp-alpha-py

此範例是比較不同的正歸化參數’alpha’,對於使用scikit-learn的資料產生器
,所產生的circlesmoon
random n-class classification,三種資料集的成效。

PS:正規化為一種處理無限大、發散以及一些不合理表示式的方法,透過引入一項輔助性的概念——正規子(regulator),去限制函數使得函數不會發散

此處的Alpha參數即為正規子,目的是去限制權重(Weight,W)的大小,以防萬一overfitting與underfitting的問題,增加alpha值可能可以處理overfitting,反之減小alpha可能可以解決underfitting的問題,至於權重大小,如何影響輸出請看圖1:
Ex 4: Varying regularization in Multi-layer Perceptron - 图1
圖1:比較同樣輸入,對於不同大小權重值,對於輸出的影響左圖為權重為5時,當輸入變動0.1時,輸出增加0.5,即輸出改變10%,右圖為權重為1時,當輸入變動0.1時,輸出增加0.1,即輸出改變2%,通常模型對於input較不敏感,模型表現較好
結果將顯示出:使用不同alpha值去限制權重產生出的決策邊界

(一)引入函式庫

  1. print(__doc__)
  2. # Author: Issam H. Laradji
  3. # License: BSD 3 clause
  4. import numpy as np
  5. from matplotlib import pyplot as plt
  6. from matplotlib.colors import ListedColormap
  7. from sklearn.model_selection import train_test_split
  8. from sklearn.preprocessing import StandardScaler
  9. from sklearn.datasets import make_moons, make_circles, make_classification
  10. from sklearn.neural_network import MLPClassifier

(二)設定模型參數與產生資料

  1. h = .02 # step size in the mesh
  2. alphas = np.logspace(-5, 3, 5)#
  3. names = []
  4. for i in alphas:
  5. names.append('alpha ' + str(i))
  6. classifiers = []
  7. for i in alphas:
  8. classifiers.append(MLPClassifier(alpha=i, random_state=1))
  9. X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
  10. random_state=0, n_clusters_per_class=1)
  11. rng = np.random.RandomState(2)
  12. X += 2 * rng.uniform(size=X.shape)
  13. linearly_separable = (X, y)
  14. datasets = [make_moons(noise=0.3, random_state=0),
  15. make_circles(noise=0.2, factor=0.5, random_state=1),
  16. linearly_separable]
  17. figure = plt.figure(figsize=(17, 9))
  18. i = 1
  19. # iterate over datasets
  20. for X, y in datasets:
  21. # preprocess dataset, split into training and test part
  22. X = StandardScaler().fit_transform(X)
  23. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
  24. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
  25. y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
  26. xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
  27. np.arange(y_min, y_max, h))

(三)繪製圖形

  1. # just plot the dataset first
  2. cm = plt.cm.RdBu
  3. cm_bright = ListedColormap(['#FF0000', '#0000FF'])
  4. ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
  5. # Plot the training points
  6. ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
  7. # and testing points
  8. ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
  9. ax.set_xlim(xx.min(), xx.max())
  10. ax.set_ylim(yy.min(), yy.max())
  11. ax.set_xticks(())
  12. ax.set_yticks(())
  13. i += 1
  14. # iterate over classifiers
  15. for name, clf in zip(names, classifiers):
  16. ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
  17. clf.fit(X_train, y_train)
  18. score = clf.score(X_test, y_test)
  19. # Plot the decision boundary. For that, we will assign a color to each
  20. # point in the mesh [x_min, x_max]x[y_min, y_max].
  21. if hasattr(clf, "decision_function"):
  22. Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
  23. else:
  24. Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
  25. # Put the result into a color plot
  26. Z = Z.reshape(xx.shape)
  27. ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
  28. # Plot also the training points
  29. ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
  30. # and testing points
  31. ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
  32. alpha=0.6)
  33. ax.set_xlim(xx.min(), xx.max())
  34. ax.set_ylim(yy.min(), yy.max())
  35. ax.set_xticks(())
  36. ax.set_yticks(())
  37. ax.set_title(name)
  38. ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
  39. size=15, horizontalalignment='right')
  40. i += 1
  41. figure.subplots_adjust(left=.02, right=.98)
  42. plt.show()

Ex 4: Varying regularization in Multi-layer Perceptron - 图2
圖2:不同alpha結果圖,每張子圖右下角是分辨率,alpha值很大,模型的結果明顯underfitting