MongoDB的索引的机制与普通数据库基本相似,主要有如下几部分:
单字段索引
MongoDB默认为所有集合创建了一个_id字段的单字段索引,该索引唯一,且不能删除(_id为集合的主键)
索引的创建方法:
db.customers.ensureIndex({name:1},{unique:false} )
查询索引:
db.system.indexes.find()
查询结果:
{ "v" : 1, "name" : "_id_", "key" : { "_id" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "name_1", "key" : { "name" : 1 }, "ns" : "test.customers" }
对有索引的查询选择器进行解释:
> db.customers.find({name:'zhangsan'}).explain()
{
"cursor" : "BtreeCursor name_1",//表示该查询用到了索引
"isMultiKey" : false,//未使用多键复合索引
"n" : 10,//查询选择匹配到的记录数量
"nscannedObjects" : 10,//执行查询扫描到的文档对象数量
"nscanned" : 10,//扫描到的文档或索引总数
"nscannedObjectsAllPlans" : 10,//扫描文旦总数在所有查询计划中
"nscannedAllPlans" : 10,//在所有查询计划中扫描的文档或索条目的总数量
"scanAndOrder" : false,//从游标取出查询到的数据时,是否对数据进行排序
"indexOnly" : false,//
"nYields" : 0,//产生的读锁数
"nChunkSkips" : 0,
"millis" : 0,//查询耗时(ms)
"indexBounds" : {
"name" : [
[
"zhangsan",
"zhangsan"
]
]
},
"server" : "raspberrypi:27017"
}
对上文含义进行解释看//以后的部分;
注意:以上部分注释以后也会用到,同时在分析查询时会经常用到,最好记下来。
复合索引
复合索引主要是指对多个字段同时添加索引,故而复合索引支持匹配多个字段的查询。创建复合索引:
db.customers.ensureIndex({id:1,age:1})
查询索引结果:
> db.system.indexes.find()
{ "v" : 1, "name" : "_id_", "key" : { "_id" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "name_1", "key" : { "name" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "id_1_age_1", "key" : { "id" : 1, "age" : 1 }, "ns" : "test.customers" }
使用索引示例:
> db.customers.find({id:{$lt:5},age:{$gt:12}})
{ "_id" : ObjectId("589835c41c85cb68725f789b"), "id" : 3, "name" : "zhangsan", "age" : 13 }
{ "_id" : ObjectId("589835c41c85cb68725f789c"), "id" : 4, "name" : "zhangsan", "age" : 14 }
解释执行示例:
> db.customers.find({id:{$lt:5},age:{$gt:12}}).explain()
{
"cursor" : "BtreeCursor id_1_age_1",
"isMultiKey" : false,
"n" : 2,
"nscannedObjects" : 2,
"nscanned" : 4,
"nscannedObjectsAllPlans" : 5,
"nscannedAllPlans" : 9,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"id" : [
[
-1.7976931348623157e+308,
5
]
],
"age" : [
[
12,
1.7976931348623157e+308
]
]
},
"server" : "raspberrypi:27017"
}
数组的多键索引
对一个值为数组类型的字段创建索引,则会默认对数组中的每一个元素都创建索引
> db.customers.ensureIndex({'orders.orders_id':1})
查看:
> db.system.indexes.find()
{ "v" : 1, "name" : "_id_", "key" : { "_id" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "name_1", "key" : { "name" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "id_1_age_1", "key" : { "id" : 1, "age" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "orders.products.product_name_1", "key" : { "orders.products.product_name" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "orders.orders_id_1", "key" : { "orders.orders_id" : 1 }, "ns" : "test.customers" }
解释执行:
> db.customers.find({'orders.orders_id':{$gte:0}}).explain()
{
"cursor" : "BtreeCursor orders.orders_id_1",
"isMultiKey" : false,
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1,
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"orders.orders_id" : [
[
0,
1.7976931348623157e+308
]
]
},
"server" : "raspberrypi:27017"
}
另外一个:
> db.customers.find({'orders.products.product_name':'iphone'})
{ "_id" : ObjectId("58983d0fc55e261327343eab"), "id" : 11, "name" : "lisi", "orders" : [ { "orders_id" : 1, "create_time" : "2017-02-06", "products" : [ { "product_name" : "MiPad", "price" : "$100.00" }, { "product_name" : "iphone", "price" : "$399.00" } ] } ], "mobile" : "13161020110", "address" : { "city" : "beijing", "street" : "taiyanggong" } }
> db.customers.find({'orders.products.product_name':'iphone'}).explain()
{
"cursor" : "BtreeCursor orders.products.product_name_1",
"isMultiKey" : true,
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1,
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
"indexBounds" : {
"orders.products.product_name" : [
[
"iphone",
"iphone"
]
]
},
"server" : "raspberrypi:27017"
}
索引管理
索引的创建我们已经在上文中有过讲述,下面总结下索引的创建格式:
db.collection.ensureIndex(keys,options)
其中key是一个document文档,包含需要添加索引的字段以及索引的排序方向;option可选,控制索引的创建方式;所有的索引都保存在集合system.indexes中;索引的删除方式为:
db.collection.dropIndex(indexName)
如:删除customers的name_1索引:
> db.customers.dropIndex('name_1')
{ "nIndexesWas" : 5, "ok" : 1 }
> db.system.indexes.find()
{ "v" : 1, "name" : "_id_", "key" : { "_id" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "id_1_age_1", "key" : { "id" : 1, "age" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "orders.products.product_name_1", "key" : { "orders.products.product_name" : 1 }, "ns" : "test.customers" }
{ "v" : 1, "name" : "orders.orders_id_1", "key" : { "orders.orders_id" : 1 }, "ns" : "test.customers" }
慢查询监控
1、MongoDB会自动的将查询语句执行时间超过100ms的输出到日志中,其中100ms可以通过mongod的启动选项 slowms设置,默认100ms2、还可以通过打开数据库的监视功能,默认是关闭的,通过如下命令打开
db.setProfilingLevel(level,[slowms])
level:监视级别,值为0为关闭,1:只记录慢日志,2:记录所有的操作监视的结果都保存在system.profile中。
示例如下:
> db.setProfilingLevel(2)
{ "was" : 0, "slowms" : 100, "ok" : 1 }
> db.customers.find()
{ "_id" : ObjectId("589835c41c85cb68725f7899"), "id" : 1, "name" : "zhangsan", "age" : 11 }
{ "_id" : ObjectId("589835c41c85cb68725f789a"), "id" : 2, "name" : "zhangsan", "age" : 12 }
{ "_id" : ObjectId("589835c41c85cb68725f789b"), "id" : 3, "name" : "zhangsan", "age" : 13 }
{ "_id" : ObjectId("589835c41c85cb68725f789c"), "id" : 4, "name" : "zhangsan", "age" : 14 }
{ "_id" : ObjectId("589835c41c85cb68725f789d"), "id" : 5, "name" : "zhangsan", "age" : 15 }
{ "_id" : ObjectId("589835c41c85cb68725f789e"), "id" : 6, "name" : "zhangsan", "age" : 16 }
{ "_id" : ObjectId("589835c41c85cb68725f789f"), "id" : 7, "name" : "zhangsan", "age" : 17 }
{ "_id" : ObjectId("589835c41c85cb68725f78a0"), "id" : 8, "name" : "zhangsan", "age" : 18 }
{ "_id" : ObjectId("589835c41c85cb68725f78a1"), "id" : 9, "name" : "zhangsan", "age" : 19 }
{ "_id" : ObjectId("589835c41c85cb68725f78a2"), "id" : 10, "name" : "zhangsan", "age" : 20 }
{ "_id" : ObjectId("58983d0fc55e261327343eab"), "id" : 11, "name" : "lisi", "orders" : [ { "orders_id" : 1, "create_time" : "2017-02-06", "products" : [ { "product_name" : "MiPad", "price" : "$100.00" }, { "product_name" : "iphone", "price" : "$399.00" } ] } ], "mobile" : "13161020110", "address" : { "city" : "beijing", "street" : "taiyanggong" } }
> db.system.profile.find()
{ "op" : "query", "ns" : "test.system.indexes", "query" : { "expireAfterSeconds" : { "$exists" : true } }, "ntoreturn" : 0, "ntoskip" : 0, "nscanned" : 4, "keyUpdates" : 0, "numYield" : 0, "lockStats" : { "timeLockedMicros" : { "r" : NumberLong(294), "w" : NumberLong(0) }, "timeAcquiringMicros" : { "r" : NumberLong(13), "w" : NumberLong(15) } }, "nreturned" : 0, "responseLength" : 20, "millis" : 0, "ts" : ISODate("2017-02-09T03:45:41.845Z"), "client" : "0.0.0.0", "allUsers" : [ ], "user" : "" }
{ "op" : "query", "ns" : "test.customers", "query" : { }, "ntoreturn" : 0, "ntoskip" : 0, "nscanned" : 11, "keyUpdates" : 0, "numYield" : 0, "lockStats" : { "timeLockedMicros" : { "r" : NumberLong(252), "w" : NumberLong(0) }, "timeAcquiringMicros" : { "r" : NumberLong(19), "w" : NumberLong(16) } }, "nreturned" : 11, "responseLength" : 995, "millis" : 0, "ts" : ISODate("2017-02-09T03:45:49.972Z"), "client" : "127.0.0.1", "allUsers" : [ ], "user" : "" }
>
当前内容版权归 linfenliang 或其关联方所有,如需对内容或内容相关联开源项目进行关注与资助,请访问 linfenliang .