设计行情系统
行情系统用来生成公开市场的历史数据,主要是K线图。
K线图的数据来源是交易引擎成交产生的一个个Tick。一个K线包括OHLC这4个价格数据。在一个时间段内,第一个Tick的价格是Open,最后一个Tick的价格是Close,最高的价格是High,最低的价格是Low:
High ──▶│
│
┌─┴─┐◀── Close
│ │
│ │
Open ──▶└─┬─┘
│
│
Low ──▶│
给定一组Tick集合,就可以汇总成一个K线,对应一个Bar结构:
public class AbstractBarEntity {
public long startTime; // 开始时间
public BigDecimal openPrice; // 开始价格
public BigDecimal highPrice; // 最高价格
public BigDecimal lowPrice; // 最低价格
public BigDecimal closePrice; // 结束价格
public BigDecimal quantity; // 成交数量
}
通常我们需要按1秒、1分钟、1小时和1天来生成不同类型的K线,因此,行情系统的功能就是不断从消息系统中读取Tick,合并,然后输出不同类型的K线。
此外,API系统还需要提供查询公开市场信息的功能。对于最近的成交信息和K线图,可以缓存在Redis中,对于较早时期的K线图,可以通过数据库查询。因此,行情系统需要将生成的K线保存到数据库中,同时负责不断更新Redis的缓存。
对于最新成交信息,我们在Redis中用一个List表示,它的每一个元素是一个序列号后的JSON:
["{...}", "{...}", "{...}"...]
如果有新的Tick产生,就需要把它们追加到列表尾部,同时将最早的Tick删除,以便维护一个最近成交的列表。
直接读取Redis列表,操作后再写回Redis是可以的,但比较麻烦。这里我们直接用Lua脚本更新最新Tick列表。Redis支持将一个Lua脚本加载后,直接在Redis内部执行脚本:
local KEY_LAST_SEQ = '_TickSeq_' -- 上次更新的SequenceID
local LIST_RECENT_TICKS = KEYS[1] -- 最新Ticks的Key
local seqId = ARGV[1] -- 输入的SequenceID
local jsonData = ARGV[2] -- 输入的JSON字符串表示的tick数组:"["{...}","{...}",...]"
local strData = ARGV[3] -- 输入的JSON字符串表示的tick数组:"[{...},{...},...]"
-- 获取上次更新的sequenceId:
local lastSeqId = redis.call('GET', KEY_LAST_SEQ)
local ticks, len;
if not lastSeqId or tonumber(seqId) > tonumber(lastSeqId) then
-- 广播:
redis.call('PUBLISH', 'notification', '{"type":"tick","sequenceId":' .. seqId .. ',"data":' .. jsonData .. '}')
-- 保存当前sequence id:
redis.call('SET', KEY_LAST_SEQ, seqId)
-- 更新最新tick列表:
ticks = cjson.decode(strData)
len = redis.call('RPUSH', LIST_RECENT_TICKS, unpack(ticks))
if len > 100 then
-- 裁剪LIST以保存最新的100个Tick:
redis.call('LTRIM', LIST_RECENT_TICKS, len-100, len-1)
end
return true
end
-- 无更新返回false
return false
在API中,要获取最新成交信息,我们直接从Redis缓存取出列表,然后拼接成一个JSON字符串:
@ResponseBody
@GetMapping(value = "/ticks", produces = "application/json")
public String getRecentTicks() {
List<String> data = redisService.lrange(RedisCache.Key.RECENT_TICKS, 0, -1);
if (data == null || data.isEmpty()) {
return "[]";
}
StringJoiner sj = new StringJoiner(",", "[", "]");
for (String t : data) {
sj.add(t);
}
return sj.toString();
}
用Lua脚本更新Redis缓存还有一个好处,就是Lua脚本执行的时候,不但可以更新List,还可以通过Publish命令广播事件,后续我们编写基于WebSocket的推送服务器时,直接监听Redis广播,就可以主动向浏览器推送Tick更新的事件。
类似的,针对每一种K线,我们都在Redis中用ZScoredSet存储,用K线的开始时间戳作为Score。更新K线时,从每种ZScoredSet中找出Score最大的Bar结构,就是最后一个Bar,然后尝试更新。如果可以持久化这个Bar就返回,如果可以合并这个Bar就刷新ZScoreSet,用Lua脚本实现如下:
local function merge(existBar, newBar)
existBar[3] = math.max(existBar[3], newBar[3]) -- 更新High Price
existBar[4] = math.min(existBar[4], newBar[4]) -- 更新Low Price
existBar[5] = newBar[5] -- close
existBar[6] = existBar[6] + newBar[6] -- 更新quantity
end
local function tryMergeLast(barType, seqId, zsetBars, timestamp, newBar)
local topic = 'notification'
local popedScore, popedBar
-- 查找最后一个Bar:
local poped = redis.call('ZPOPMAX', zsetBars)
if #poped == 0 then
-- ZScoredSet无任何bar, 直接添加:
redis.call('ZADD', zsetBars, timestamp, cjson.encode(newBar))
redis.call('PUBLISH', topic, '{"type":"bar","resolution":"' .. barType .. '","sequenceId":' .. seqId .. ',"data":' .. cjson.encode(newBar) .. '}')
else
popedBar = cjson.decode(poped[1])
popedScore = tonumber(poped[2])
if popedScore == timestamp then
-- 合并Bar并发送通知:
merge(popedBar, newBar)
redis.call('ZADD', zsetBars, popedScore, cjson.encode(popedBar))
redis.call('PUBLISH', topic, '{"type":"bar","resolution":"' .. barType .. '","sequenceId":' .. seqId .. ',"data":' .. cjson.encode(popedBar) .. '}')
else
-- 可持久化最后一个Bar,生成新的Bar:
if popedScore < timestamp then
redis.call('ZADD', zsetBars, popedScore, cjson.encode(popedBar), timestamp, cjson.encode(newBar))
redis.call('PUBLISH', topic, '{"type":"bar","resolution":"' .. barType .. '","sequenceId":' .. seqId .. ',"data":' .. cjson.encode(newBar) .. '}')
return popedBar
end
end
end
return nil
end
local seqId = ARGV[1]
local KEY_BAR_SEQ = '_BarSeq_'
local zsetBars, topics, barTypeStartTimes
local openPrice, highPrice, lowPrice, closePrice, quantity
local persistBars = {}
-- 检查sequence:
local seq = redis.call('GET', KEY_BAR_SEQ)
if not seq or tonumber(seqId) > tonumber(seq) then
zsetBars = { KEYS[1], KEYS[2], KEYS[3], KEYS[4] }
barTypeStartTimes = { tonumber(ARGV[2]), tonumber(ARGV[3]), tonumber(ARGV[4]), tonumber(ARGV[5]) }
openPrice = tonumber(ARGV[6])
highPrice = tonumber(ARGV[7])
lowPrice = tonumber(ARGV[8])
closePrice = tonumber(ARGV[9])
quantity = tonumber(ARGV[10])
local i, bar
local names = { 'SEC', 'MIN', 'HOUR', 'DAY' }
-- 检查是否可以merge:
for i = 1, 4 do
bar = tryMergeLast(names[i], seqId, zsetBars[i], barTypeStartTimes[i], { barTypeStartTimes[i], openPrice, highPrice, lowPrice, closePrice, quantity })
if bar then
persistBars[names[i]] = bar
end
end
redis.call('SET', KEY_BAR_SEQ, seqId)
return cjson.encode(persistBars)
end
redis.log(redis.LOG_WARNING, 'sequence ignored: exist seq => ' .. seq .. ' >= ' .. seqId .. ' <= new seq')
return '{}'
接下来我们编写QuotationService
,初始化的时候加载Redis脚本,接收到Tick消息时调用脚本更新Tick和Bar,然后持久化Tick和Bar,代码如下:
@Component
public class QuotationService {
@Autowired
RedisService redisService;
@Autowired
MessagingFactory messagingFactory;
MessageConsumer tickConsumer;
private String shaUpdateRecentTicksLua = null;
private String shaUpdateBarLua = null;
@PostConstruct
public void init() throws Exception {
// 加载Redis脚本:
this.shaUpdateRecentTicksLua = this.redisService.loadScriptFromClassPath("/redis/update-recent-ticks.lua");
this.shaUpdateBarLua = this.redisService.loadScriptFromClassPath("/redis/update-bar.lua");
// 接收Tick消息:
String groupId = Messaging.Topic.TICK.name() + "_" + IpUtil.getHostId();
this.tickConsumer = messagingFactory.createBatchMessageListener(Messaging.Topic.TICK, groupId,
this::processMessages);
}
// 处理接收的消息:
public void processMessages(List<AbstractMessage> messages) {
for (AbstractMessage message : messages) {
processMessage((TickMessage) message);
}
}
// 处理一个Tick消息:
void processMessage(TickMessage message) {
// 对一个Tick消息中的多个Tick先进行合并:
final long createdAt = message.createdAt;
StringJoiner ticksStrJoiner = new StringJoiner(",", "[", "]");
StringJoiner ticksJoiner = new StringJoiner(",", "[", "]");
BigDecimal openPrice = BigDecimal.ZERO;
BigDecimal closePrice = BigDecimal.ZERO;
BigDecimal highPrice = BigDecimal.ZERO;
BigDecimal lowPrice = BigDecimal.ZERO;
BigDecimal quantity = BigDecimal.ZERO;
for (TickEntity tick : message.ticks) {
String json = tick.toJson();
ticksStrJoiner.add("\"" + json + "\"");
ticksJoiner.add(json);
if (openPrice.signum() == 0) {
openPrice = tick.price;
closePrice = tick.price;
highPrice = tick.price;
lowPrice = tick.price;
} else {
// open price is set:
closePrice = tick.price;
highPrice = highPrice.max(tick.price);
lowPrice = lowPrice.min(tick.price);
}
quantity = quantity.add(tick.quantity);
}
// 计算应该合并的每种类型的Bar的开始时间:
long sec = createdAt / 1000;
long min = sec / 60;
long hour = min / 60;
long secStartTime = sec * 1000;
long minStartTime = min * 60 * 1000;
long hourStartTime = hour * 3600 * 1000;
long dayStartTime = Instant.ofEpochMilli(hourStartTime).atZone(zoneId).withHour(0).toEpochSecond() * 1000;
// 更新Tick缓存:
String ticksData = ticksJoiner.toString();
Boolean tickOk = redisService.executeScriptReturnBoolean(this.shaUpdateRecentTicksLua,
new String[] { RedisCache.Key.RECENT_TICKS },
new String[] { String.valueOf(this.sequenceId), ticksData, ticksStrJoiner.toString() });
if (!tickOk.booleanValue()) {
logger.warn("ticks are ignored by Redis.");
return;
}
// 保存Tick至数据库:
saveTicks(message.ticks);
// 更新Redis缓存的各种类型的Bar:
String strCreatedBars = redisService.executeScriptReturnString(this.shaUpdateBarLua,
new String[] { RedisCache.Key.SEC_BARS, RedisCache.Key.MIN_BARS, RedisCache.Key.HOUR_BARS,
RedisCache.Key.DAY_BARS },
new String[] { // ARGV
String.valueOf(this.sequenceId), // sequence id
String.valueOf(secStartTime), // sec-start-time
String.valueOf(minStartTime), // min-start-time
String.valueOf(hourStartTime), // hour-start-time
String.valueOf(dayStartTime), // day-start-time
String.valueOf(openPrice), // open
String.valueOf(highPrice), // high
String.valueOf(lowPrice), // low
String.valueOf(closePrice), // close
String.valueOf(quantity) // quantity
});
Map<BarType, BigDecimal[]> barMap = JsonUtil.readJson(strCreatedBars, TYPE_BARS);
if (!barMap.isEmpty()) {
// 保存Bar:
SecBarEntity secBar = createBar(SecBarEntity::new, barMap.get(BarType.SEC));
MinBarEntity minBar = createBar(MinBarEntity::new, barMap.get(BarType.MIN));
HourBarEntity hourBar = createBar(HourBarEntity::new, barMap.get(BarType.HOUR));
DayBarEntity dayBar = createBar(DayBarEntity::new, barMap.get(BarType.DAY));
saveBars(secBar, minBar, hourBar, dayBar);
}
}
}
K线是一组Bar按ZSet缓存在Redis中,Score就是Bar的开始时间。更新Bar时,同时广播通知,以便后续推送。要查询某种K线图,在API中,需要传入开始和结束的时间戳,通过ZRANGE命令返回排序后的List:
String getBars(String key, long start, long end) {
List<String> data = redisService.zrangebyscore(key, start, end);
if (data == null || data.isEmpty()) {
return "[]";
}
StringJoiner sj = new StringJoiner(",", "[", "]");
for (String t : data) {
sj.add(t);
}
return sj.toString();
}
参考源码
GitHub ▸ michaelliao ▸ warpexchange ▸ /
▸ java/com/itranswarp/exchange)
▤ SimpleMatchDetailRecord.java)
▸ db)
▤ MessagingConfiguration.java)
▸ ui)
▸ java/com/itranswarp/exchange/config)
▸ java/com/itranswarp/exchange/push)
▸ java/com/itranswarp/exchange)
▸ java/com/itranswarp/exchange)
▤ TradingEngineApiProxyService.java)
▤ TradingInternalApiController.java)
▤ ApiFilterRegistrationBean.java)
▸ java/com/itranswarp/exchange)
▤ InternalTradingEngineApiController.java)
▤ TradingEngineApplication.java)
▸ test/java/com/itranswarp/exchange)
▤ TradingEngineServiceTest.java)
▸ java/com/itranswarp/exchange)
▤ TradingSequencerApplication.java)
▸ ui)
▸ java/com/itranswarp/exchange)
小结
行情系统是典型的少量写、大量读的模式,非常适合缓存。通过编写Lua脚本可使得更新Redis更加简单。