Pod 拓扑分布约束
你可以使用 拓扑分布约束(Topology Spread Constraints) 来控制 Pod 在集群内故障域之间的分布, 例如区域(Region)、可用区(Zone)、节点和其他用户自定义拓扑域。 这样做有助于实现高可用并提升资源利用率。
你可以将集群级约束设为默认值,或为个别工作负载配置拓扑分布约束。
动机
假设你有一个最多包含二十个节点的集群,你想要运行一个自动扩缩的 工作负载,请问要使用多少个副本? 答案可能是最少 2 个 Pod,最多 15 个 Pod。 当只有 2 个 Pod 时,你倾向于这 2 个 Pod 不要同时在同一个节点上运行: 你所遭遇的风险是如果放在同一个节点上且单节点出现故障,可能会让你的工作负载下线。
除了这个基本的用法之外,还有一些高级的使用案例,能够让你的工作负载受益于高可用性并提高集群利用率。
随着你的工作负载扩容,运行的 Pod 变多,将需要考虑另一个重要问题。 假设你有 3 个节点,每个节点运行 5 个 Pod。这些节点有足够的容量能够运行许多副本; 但与这个工作负载互动的客户端分散在三个不同的数据中心(或基础设施可用区)。 现在你可能不太关注单节点故障问题,但你会注意到延迟高于自己的预期, 在不同的可用区之间发送网络流量会产生一些网络成本。
你决定在正常运营时倾向于将类似数量的副本调度 到每个基础设施可用区,且你想要该集群在遇到问题时能够自愈。
Pod 拓扑分布约束使你能够以声明的方式进行配置。
topologySpreadConstraints
字段
Pod API 包括一个 spec.topologySpreadConstraints
字段。这里有一个示例:
---
apiVersion: v1
kind: Pod
metadata:
name: example-pod
spec:
# 配置一个拓扑分布约束
topologySpreadConstraints:
- maxSkew: <integer>
minDomains: <integer> # 可选;自从 v1.24 开始成为 Alpha
topologyKey: <string>
whenUnsatisfiable: <string>
labelSelector: <object>
### 其他 Pod 字段置于此处
你可以运行 kubectl explain Pod.spec.topologySpreadConstraints
阅读有关此字段的更多信息。
分布约束定义
你可以定义一个或多个 topologySpreadConstraints
条目以指导 kube-scheduler 如何将每个新来的 Pod 与跨集群的现有 Pod 相关联。这些字段包括:
maxSkew 描述这些 Pod 可能被均匀分布的程度。你必须指定此字段且该数值必须大于零。 其语义将随着
whenUnsatisfiable
的值发生变化:- 如果你选择
whenUnsatisfiable: DoNotSchedule
,则maxSkew
定义目标拓扑中匹配 Pod 的数量与 全局最小值(与拓扑域中标签选择算符匹配的最小 Pod 数量)之间的最大允许差值。 例如,如果你有 3 个可用区,分别有 2、4 和 5 个匹配的 Pod,则全局最小值为 2, 而maxSkew
相对于该数字进行比较。 - 如果你选择
whenUnsatisfiable: ScheduleAnyway
,则该调度器会更为偏向能够降低偏差值的拓扑域。
- 如果你选择
minDomains 表示符合条件的域的最小数量。此字段是可选的。域是拓扑的一个特定实例。 符合条件的域是其节点与节点选择器匹配的域。
说明:
minDomains
字段是 1.24 中添加的一个 Alpha 字段。 你必须启用MinDomainsInPodToplogySpread
特性门控,才能使用该字段。- 指定的
minDomains
值必须大于 0。你可以结合whenUnsatisfiable: DoNotSchedule
仅指定minDomains
。 - 当符合条件的、拓扑键匹配的域的数量小于
minDomains
时,拓扑分布将“全局最小值”(global minimum)设为 0, 然后进行skew
计算。“全局最小值” 是一个符合条件的域中匹配 Pod 的最小数量, 如果符合条件的域的数量小于minDomains
,则全局最小值为零。 - 当符合条件的拓扑键匹配域的个数等于或大于
minDomains
时,该值对调度没有影响。 - 如果你未指定
minDomains
,则约束行为类似于minDomains
等于 1。
- 指定的
topologyKey 是节点标签的键。如果两个节点使用此键标记并且具有相同的标签值, 则调度器会将这两个节点视为处于同一拓扑域中。该调度器尝试在每个拓扑域中放置数量均衡的 Pod。
whenUnsatisfiable 指示如果 Pod 不满足分布约束时如何处理:
DoNotSchedule
(默认)告诉调度器不要调度。ScheduleAnyway
告诉调度器仍然继续调度,只是根据如何能将偏差最小化来对节点进行排序。
- labelSelector 用于查找匹配的 Pod。匹配此标签的 Pod 将被统计,以确定相应拓扑域中 Pod 的数量。 有关详细信息,请参考标签选择算符。
当 Pod 定义了不止一个 topologySpreadConstraint
,这些约束之间是逻辑与的关系。 kube-scheduler 会为新的 Pod 寻找一个能够满足所有约束的节点。
节点标签
拓扑分布约束依赖于节点标签来标识每个节点所在的拓扑域。例如,某节点可能具有标签:
region: us-east-1
zone: us-east-1a
说明:
为了简便,此示例未使用众所周知的标签键 topology.kubernetes.io/zone
和 topology.kubernetes.io/region
。 但是,建议使用那些已注册的标签键,而不是此处使用的私有(不合格)标签键 region
和 zone
。
你无法对不同上下文之间的私有标签键的含义做出可靠的假设。
假设你有一个 4 节点的集群且带有以下标签:
NAME STATUS ROLES AGE VERSION LABELS
node1 Ready <none> 4m26s v1.16.0 node=node1,zone=zoneA
node2 Ready <none> 3m58s v1.16.0 node=node2,zone=zoneA
node3 Ready <none> 3m17s v1.16.0 node=node3,zone=zoneB
node4 Ready <none> 2m43s v1.16.0 node=node4,zone=zoneB
那么,从逻辑上看集群如下:
graph TB subgraph “zoneB” n3(Node3) n4(Node4) end subgraph “zoneA” n1(Node1) n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4 k8s; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
一致性
你应该为一个组中的所有 Pod 设置相同的 Pod 拓扑分布约束。
通常,如果你正使用一个工作负载控制器,例如 Deployment,则 Pod 模板会帮你解决这个问题。 如果你混合不同的分布约束,则 Kubernetes 会遵循该字段的 API 定义; 但是,该行为可能更令人困惑,并且故障排除也没那么简单。
你需要一种机制来确保拓扑域(例如云提供商区域)中的所有节点具有一致的标签。 为了避免你需要手动为节点打标签,大多数集群会自动填充知名的标签, 例如 topology.kubernetes.io/hostname
。检查你的集群是否支持此功能。
拓扑分布约束示例
示例:一个拓扑分布约束
假设你拥有一个 4 节点集群,其中标记为 foo: bar
的 3 个 Pod 分别位于 node1、node2 和 node3 中:
graph BT subgraph “zoneB” p3(Pod) —> n3(Node3) n4(Node4) end subgraph “zoneA” p1(Pod) —> n1(Node1) p2(Pod) —> n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4,p1,p2,p3 k8s; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
如果你希望新来的 Pod 均匀分布在现有的可用区域,则可以按如下设置其清单:
pods/topology-spread-constraints/one-constraint.yaml
kind: Pod
apiVersion: v1
metadata:
name: mypod
labels:
foo: bar
spec:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: zone
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
foo: bar
containers:
- name: pause
image: registry.k8s.io/pause:3.1
从此清单看,topologyKey: zone
意味着均匀分布将只应用于存在标签键值对为 zone: <any value>
的节点 (没有 zone
标签的节点将被跳过)。如果调度器找不到一种方式来满足此约束, 则 whenUnsatisfiable: DoNotSchedule
字段告诉该调度器将新来的 Pod 保持在 pending 状态。
如果该调度器将这个新来的 Pod 放到可用区 A
,则 Pod 的分布将成为 [3, 1]
。 这意味着实际偏差是 2(计算公式为 3 - 1
),这违反了 maxSkew: 1
的约定。 为了满足这个示例的约束和上下文,新来的 Pod 只能放到可用区 B
中的一个节点上:
graph BT subgraph “zoneB” p3(Pod) —> n3(Node3) p4(mypod) —> n4(Node4) end subgraph “zoneA” p1(Pod) —> n1(Node1) p2(Pod) —> n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4,p1,p2,p3 k8s; class p4 plain; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
或者
graph BT subgraph “zoneB” p3(Pod) —> n3(Node3) p4(mypod) —> n3 n4(Node4) end subgraph “zoneA” p1(Pod) —> n1(Node1) p2(Pod) —> n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4,p1,p2,p3 k8s; class p4 plain; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
你可以调整 Pod 规约以满足各种要求:
- 将
maxSkew
更改为更大的值,例如2
,这样新来的 Pod 也可以放在可用区A
中。 - 将
topologyKey
更改为node
,以便将 Pod 均匀分布在节点上而不是可用区中。 在上面的例子中,如果maxSkew
保持为1
,则新来的 Pod 只能放到node4
节点上。 - 将
whenUnsatisfiable: DoNotSchedule
更改为whenUnsatisfiable: ScheduleAnyway
, 以确保新来的 Pod 始终可以被调度(假设满足其他的调度 API)。但是,最好将其放置在匹配 Pod 数量较少的拓扑域中。 请注意,这一优先判定会与其他内部调度优先级(如资源使用率等)排序准则一起进行标准化。
示例:多个拓扑分布约束
下面的例子建立在前面例子的基础上。假设你拥有一个 4 节点集群, 其中 3 个标记为 foo: bar
的 Pod 分别位于 node1、node2 和 node3 上:
graph BT subgraph “zoneB” p3(Pod) —> n3(Node3) n4(Node4) end subgraph “zoneA” p1(Pod) —> n1(Node1) p2(Pod) —> n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4,p1,p2,p3 k8s; class p4 plain; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
可以组合使用 2 个拓扑分布约束来控制 Pod 在节点和可用区两个维度上的分布:
pods/topology-spread-constraints/two-constraints.yaml
kind: Pod
apiVersion: v1
metadata:
name: mypod
labels:
foo: bar
spec:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: zone
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
foo: bar
- maxSkew: 1
topologyKey: node
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
foo: bar
containers:
- name: pause
image: registry.k8s.io/pause:3.1
在这种情况下,为了匹配第一个约束,新的 Pod 只能放置在可用区 B
中; 而在第二个约束中,新来的 Pod 只能调度到节点 node4
上。 该调度器仅考虑满足所有已定义约束的选项,因此唯一可行的选择是放置在节点 node4
上。
示例:有冲突的拓扑分布约束
多个约束可能导致冲突。假设有一个跨 2 个可用区的 3 节点集群:
graph BT subgraph “zoneB” p4(Pod) —> n3(Node3) p5(Pod) —> n3 end subgraph “zoneA” p1(Pod) —> n1(Node1) p2(Pod) —> n1 p3(Pod) —> n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4,p1,p2,p3,p4,p5 k8s; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
如果你将 two-constraints.yaml (来自上一个示例的清单)应用到这个集群,你将看到 Pod mypod
保持在 Pending
状态。 出现这种情况的原因为:为了满足第一个约束,Pod mypod
只能放置在可用区 B
中; 而在第二个约束中,Pod mypod
只能调度到节点 node2
上。 两个约束的交集将返回一个空集,且调度器无法放置该 Pod。
为了应对这种情形,你可以提高 maxSkew
的值或修改其中一个约束才能使用 whenUnsatisfiable: ScheduleAnyway
。 根据实际情形,例如若你在故障排查时发现某个漏洞修复工作毫无进展,你还可能决定手动删除一个现有的 Pod。
与节点亲和性和节点选择算符的相互作用
如果 Pod 定义了 spec.nodeSelector
或 spec.affinity.nodeAffinity
, 调度器将在偏差计算中跳过不匹配的节点。
示例:带节点亲和性的拓扑分布约束
假设你有一个跨可用区 A 到 C 的 5 节点集群:
graph BT subgraph “zoneB” p3(Pod) —> n3(Node3) n4(Node4) end subgraph “zoneA” p1(Pod) —> n1(Node1) p2(Pod) —> n2(Node2) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n1,n2,n3,n4,p1,p2,p3 k8s; class p4 plain; class zoneA,zoneB cluster;
必须启用 JavaScript 才能查看此页内容
graph BT subgraph “zoneC” n5(Node5) end classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000; classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff; classDef cluster fill:#fff,stroke:#bbb,stroke-width:2px,color:#326ce5; class n5 k8s; class zoneC cluster;
必须启用 JavaScript 才能查看此页内容
而且你知道可用区 C
必须被排除在外。在这种情况下,可以按如下方式编写清单, 以便将 Pod mypod
放置在可用区 B
上,而不是可用区 C
上。 同样,Kubernetes 也会一样处理 spec.nodeSelector
。
pods/topology-spread-constraints/one-constraint-with-nodeaffinity.yaml
kind: Pod
apiVersion: v1
metadata:
name: mypod
labels:
foo: bar
spec:
topologySpreadConstraints:
- maxSkew: 1
topologyKey: zone
whenUnsatisfiable: DoNotSchedule
labelSelector:
matchLabels:
foo: bar
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: zone
operator: NotIn
values:
- zoneC
containers:
- name: pause
image: registry.k8s.io/pause:3.1
隐式约定
这里有一些值得注意的隐式约定:
只有与新来的 Pod 具有相同命名空间的 Pod 才能作为匹配候选者。
调度器会忽略没有任何
topologySpreadConstraints[*].topologyKey
的节点。这意味着:- 位于这些节点上的 Pod 不影响
maxSkew
计算,在上面的例子中,假设节点node1
没有标签 “zone”, 则 2 个 Pod 将被忽略,因此新来的 Pod 将被调度到可用区A
中。 - 新的 Pod 没有机会被调度到这类节点上。在上面的例子中, 假设节点
node5
带有 拼写错误的 标签zone-typo: zoneC
(且没有设置zone
标签)。 节点node5
接入集群之后,该节点将被忽略且针对该工作负载的 Pod 不会被调度到那里。
- 位于这些节点上的 Pod 不影响
注意,如果新 Pod 的
topologySpreadConstraints[*].labelSelector
与自身的标签不匹配,将会发生什么。 在上面的例子中,如果移除新 Pod 的标签,则 Pod 仍然可以放置到可用区B
中的节点上,因为这些约束仍然满足。 然而,在放置之后,集群的不平衡程度保持不变。可用区A
仍然有 2 个 Pod 带有标签foo: bar
, 而可用区B
有 1 个 Pod 带有标签foo: bar
。如果这不是你所期望的, 更新工作负载的topologySpreadConstraints[*].labelSelector
以匹配 Pod 模板中的标签。
集群级别的默认约束
为集群设置默认的拓扑分布约束也是可能的。默认拓扑分布约束在且仅在以下条件满足时才会被应用到 Pod 上:
- Pod 没有在其
.spec.topologySpreadConstraints
中定义任何约束。 - Pod 隶属于某个 Service、ReplicaSet、StatefulSet 或 ReplicationController。
默认约束可以设置为调度方案中 PodTopologySpread
插件参数的一部分。约束的设置采用如前所述的 API, 只是 labelSelector
必须为空。 选择算符是根据 Pod 所属的 Service、ReplicaSet、StatefulSet 或 ReplicationController 来设置的。
配置的示例可能看起来像下面这个样子:
apiVersion: kubescheduler.config.k8s.io/v1beta3
kind: KubeSchedulerConfiguration
profiles:
- schedulerName: default-scheduler
pluginConfig:
- name: PodTopologySpread
args:
defaultConstraints:
- maxSkew: 1
topologyKey: topology.kubernetes.io/zone
whenUnsatisfiable: ScheduleAnyway
defaultingType: List
说明: 默认配置下,SelectorSpread 插件是被禁用的。 Kubernetes 项目建议使用 PodTopologySpread
以执行类似行为。
内置默认约束
特性状态: Kubernetes v1.24 [stable]
如果你没有为 Pod 拓扑分布配置任何集群级别的默认约束, kube-scheduler 的行为就像你指定了以下默认拓扑约束一样:
defaultConstraints:
- maxSkew: 3
topologyKey: "kubernetes.io/hostname"
whenUnsatisfiable: ScheduleAnyway
- maxSkew: 5
topologyKey: "topology.kubernetes.io/zone"
whenUnsatisfiable: ScheduleAnyway
此外,原来用于提供等同行为的 SelectorSpread
插件默认被禁用。
说明:
对于分布约束中所指定的拓扑键而言,PodTopologySpread
插件不会为不包含这些拓扑键的节点评分。 这可能导致在使用默认拓扑约束时,其行为与原来的 SelectorSpread
插件的默认行为不同。
如果你的节点不会 同时 设置 kubernetes.io/hostname
和 topology.kubernetes.io/zone
标签, 你应该定义自己的约束而不是使用 Kubernetes 的默认约束。
如果你不想为集群使用默认的 Pod 分布约束,你可以通过设置 defaultingType
参数为 List
, 并将 PodTopologySpread
插件配置中的 defaultConstraints
参数置空来禁用默认 Pod 分布约束:
apiVersion: kubescheduler.config.k8s.io/v1beta3
kind: KubeSchedulerConfiguration
profiles:
- schedulerName: default-scheduler
pluginConfig:
- name: PodTopologySpread
args:
defaultConstraints: []
defaultingType: List
比较 podAffinity 和 podAntiAffinity
在 Kubernetes 中,Pod 间亲和性和反亲和性控制 Pod 彼此的调度方式(更密集或更分散)。
对于 podAffinity
:吸引 Pod;你可以尝试将任意数量的 Pod 集中到符合条件的拓扑域中。 对于 podAntiAffinity
:驱逐 Pod。如果将此设为 requiredDuringSchedulingIgnoredDuringExecution
模式, 则只有单个 Pod 可以调度到单个拓扑域;如果你选择 preferredDuringSchedulingIgnoredDuringExecution
, 则你将丢失强制执行此约束的能力。
要实现更细粒度的控制,你可以设置拓扑分布约束来将 Pod 分布到不同的拓扑域下,从而实现高可用性或节省成本。 这也有助于工作负载的滚动更新和平稳地扩展副本规模。
有关详细信息,请参阅有关 Pod 拓扑分布约束的增强倡议的 动机一节。
已知局限性
当 Pod 被移除时,无法保证约束仍被满足。例如,缩减某 Deployment 的规模时,Pod 的分布可能不再均衡。
你可以使用 Descheduler 来重新实现 Pod 分布的均衡。
具有污点的节点上匹配的 Pod 也会被统计。 参考 Issue 80921。
该调度器不会预先知道集群拥有的所有可用区和其他拓扑域。 拓扑域由集群中存在的节点确定。在自动扩缩的集群中,如果一个节点池(或节点组)的节点数量缩减为零, 而用户正期望其扩容时,可能会导致调度出现问题。 因为在这种情况下,调度器不会考虑这些拓扑域,因为其中至少有一个节点。
你可以通过使用感知 Pod 拓扑分布约束并感知整个拓扑域集的集群自动扩缩工具来解决此问题。
接下来
- 博客:PodTopologySpread 介绍详细解释了
maxSkew
, 并给出了一些进阶的使用示例。 - 阅读针对 Pod 的 API 参考的 调度一节。