- Using a KMS provider for data encryption
Using a KMS provider for data encryption
This page shows how to configure a Key Management Service (KMS) provider and plugin to enable secret data encryption. Currently there are two KMS API versions. KMS v1 will continue to work while v2 develops in maturity. If you are not sure which KMS API version to pick, choose v1.
Before you begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:
The version of Kubernetes that you need depends on which KMS API version you have selected.
- If you selected KMS API v1, any supported Kubernetes version will work fine.
- If you selected KMS API v2, you should use Kubernetes v1.25 (if you are running a different version of Kubernetes that also supports the v2 KMS API, switch to the documentation for that version of Kubernetes).
To check the version, enter kubectl version
.
KMS v1
Kubernetes version 1.10.0 or later is required
Your cluster must use etcd v3 or later
FEATURE STATE: Kubernetes v1.12 [beta]
KMS v2
Kubernetes version 1.25.0 or later is required
Set kube-apiserver feature gate:
--feature-gates=KMSv2=true
to configure a KMS v2 providerYour cluster must use etcd v3 or later
FEATURE STATE: Kubernetes v1.25 [alpha]
The KMS encryption provider uses an envelope encryption scheme to encrypt data in etcd. The data is encrypted using a data encryption key (DEK); a new DEK is generated for each encryption. The DEKs are encrypted with a key encryption key (KEK) that is stored and managed in a remote KMS. The KMS provider uses gRPC to communicate with a specific KMS plugin. The KMS plugin, which is implemented as a gRPC server and deployed on the same host(s) as the Kubernetes control plane, is responsible for all communication with the remote KMS.
Configuring the KMS provider
To configure a KMS provider on the API server, include a provider of type kms
in the providers
array in the encryption configuration file and set the following properties:
KMS v1
name
: Display name of the KMS plugin. Cannot be changed once set.endpoint
: Listen address of the gRPC server (KMS plugin). The endpoint is a UNIX domain socket.cachesize
: Number of data encryption keys (DEKs) to be cached in the clear. When cached, DEKs can be used without another call to the KMS; whereas DEKs that are not cached require a call to the KMS to unwrap.timeout
: How long shouldkube-apiserver
wait for kms-plugin to respond before returning an error (default is 3 seconds).
KMS v2
apiVersion
: API Version for KMS provider (Allowed values: v2, v1 or empty. Any other value will result in an error.) Must be set to v2 to use the KMS v2 APIs.name
: Display name of the KMS plugin. Cannot be changed once set.endpoint
: Listen address of the gRPC server (KMS plugin). The endpoint is a UNIX domain socket.cachesize
: Number of data encryption keys (DEKs) to be cached in the clear. When cached, DEKs can be used without another call to the KMS; whereas DEKs that are not cached require a call to the KMS to unwrap.timeout
: How long shouldkube-apiserver
wait for kms-plugin to respond before returning an error (default is 3 seconds).
See Understanding the encryption at rest configuration.
Implementing a KMS plugin
To implement a KMS plugin, you can develop a new plugin gRPC server or enable a KMS plugin already provided by your cloud provider. You then integrate the plugin with the remote KMS and deploy it on the Kubernetes master.
Enabling the KMS supported by your cloud provider
Refer to your cloud provider for instructions on enabling the cloud provider-specific KMS plugin.
Developing a KMS plugin gRPC server
You can develop a KMS plugin gRPC server using a stub file available for Go. For other languages, you use a proto file to create a stub file that you can use to develop the gRPC server code.
KMS v1
Using Go: Use the functions and data structures in the stub file: api.pb.go to develop the gRPC server code
Using languages other than Go: Use the protoc compiler with the proto file: api.proto to generate a stub file for the specific language
KMS v2
Using Go: Use the functions and data structures in the stub file: api.pb.go to develop the gRPC server code
Using languages other than Go: Use the protoc compiler with the proto file: api.proto to generate a stub file for the specific language
Then use the functions and data structures in the stub file to develop the server code.
Notes
KMS v1
kms plugin version:
v1beta1
In response to procedure call Version, a compatible KMS plugin should return
v1beta1
asVersionResponse.version
.message version:
v1beta1
All messages from KMS provider have the version field set to current version v1beta1.
protocol: UNIX domain socket (
unix
)The plugin is implemented as a gRPC server that listens at UNIX domain socket. The plugin deployment should create a file on the file system to run the gRPC unix domain socket connection. The API server (gRPC client) is configured with the KMS provider (gRPC server) unix domain socket endpoint in order to communicate with it. An abstract Linux socket may be used by starting the endpoint with
/@
, i.e.unix:///@foo
. Care must be taken when using this type of socket as they do not have concept of ACL (unlike traditional file based sockets). However, they are subject to Linux networking namespace, so will only be accessible to containers within the same pod unless host networking is used.
KMS v2
kms plugin version:
v2alpha1
In response to procedure call Status, a compatible KMS plugin should return
v2alpha1
asStatusResponse.Version
, “ok” asStatusResponse.Healthz
and a keyID (KMS KEK ID) asStatusResponse.KeyID
protocol: UNIX domain socket (
unix
)The plugin is implemented as a gRPC server that listens at UNIX domain socket. The plugin deployment should create a file on the file system to run the gRPC unix domain socket connection. The API server (gRPC client) is configured with the KMS provider (gRPC server) unix domain socket endpoint in order to communicate with it. An abstract Linux socket may be used by starting the endpoint with
/@
, i.e.unix:///@foo
. Care must be taken when using this type of socket as they do not have concept of ACL (unlike traditional file based sockets). However, they are subject to Linux networking namespace, so will only be accessible to containers within the same pod unless host networking is used.
Integrating a KMS plugin with the remote KMS
The KMS plugin can communicate with the remote KMS using any protocol supported by the KMS. All configuration data, including authentication credentials the KMS plugin uses to communicate with the remote KMS, are stored and managed by the KMS plugin independently. The KMS plugin can encode the ciphertext with additional metadata that may be required before sending it to the KMS for decryption.
Deploying the KMS plugin
Ensure that the KMS plugin runs on the same host(s) as the Kubernetes master(s).
Encrypting your data with the KMS provider
To encrypt the data:
Create a new
EncryptionConfiguration
file using the appropriate properties for thekms
provider to encrypt resources like Secrets and ConfigMaps.Set the
--encryption-provider-config
flag on the kube-apiserver to point to the location of the configuration file.Restart your API server.
KMS v1
apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
- resources:
- secrets
providers:
- kms:
name: myKmsPluginFoo
endpoint: unix:///tmp/socketfile.sock
cachesize: 100
timeout: 3s
- kms:
name: myKmsPluginBar
endpoint: unix:///tmp/socketfile.sock
cachesize: 100
timeout: 3s
KMS v2
apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
- resources:
- secrets
providers:
- kms:
apiVersion: v2
name: myKmsPluginFoo
endpoint: unix:///tmp/socketfile.sock
cachesize: 100
timeout: 3s
- kms:
name: myKmsPluginBar
endpoint: unix:///tmp/socketfile.sock
cachesize: 100
timeout: 3s
Until the steps defined in Ensuring all secrets are encrypted are performed, the providers
list should end with the identity: {}
provider to allow unencrypted data to be read. Once all resources are encrypted, the identity
provider should be removed to prevent the API server from honoring unencrypted data.
For details about the EncryptionConfiguration
format, please check the API server encryption API reference.
Verifying that the data is encrypted
Data is encrypted when written to etcd. After restarting your kube-apiserver
, any newly created or updated secret should be encrypted when stored. To verify, you can use the etcdctl
command line program to retrieve the contents of your secret.
Create a new secret called
secret1
in thedefault
namespace:kubectl create secret generic secret1 -n default --from-literal=mykey=mydata
Using the
etcdctl
command line, read that secret out of etcd:ETCDCTL_API=3 etcdctl get /kubernetes.io/secrets/default/secret1 [...] | hexdump -C
where
[...]
contains the additional arguments for connecting to the etcd server.Verify the stored secret is prefixed with
k8s:enc:kms:v1:
for KMS v1 or prefixed withk8s:enc:kms:v2:
for KMS v2, which indicates that thekms
provider has encrypted the resulting data.Verify that the secret is correctly decrypted when retrieved via the API:
kubectl describe secret secret1 -n default
The Secret should contain
mykey: mydata
Ensuring all secrets are encrypted
Because secrets are encrypted on write, performing an update on a secret encrypts that content.
The following command reads all secrets and then updates them to apply server side encryption. If an error occurs due to a conflicting write, retry the command. For larger clusters, you may wish to subdivide the secrets by namespace or script an update.
kubectl get secrets --all-namespaces -o json | kubectl replace -f -
Switching from a local encryption provider to the KMS provider
To switch from a local encryption provider to the kms
provider and re-encrypt all of the secrets:
Add the
kms
provider as the first entry in the configuration file as shown in the following example.apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
- resources:
- secrets
providers:
- kms:
name : myKmsPlugin
endpoint: unix:///tmp/socketfile.sock
cachesize: 100
- aescbc:
keys:
- name: key1
secret: <BASE 64 ENCODED SECRET>
Restart all
kube-apiserver
processes.Run the following command to force all secrets to be re-encrypted using the
kms
provider.kubectl get secrets --all-namespaces -o json | kubectl replace -f -
Disabling encryption at rest
To disable encryption at rest:
Place the
identity
provider as the first entry in the configuration file:apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
- resources:
- secrets
providers:
- identity: {}
- kms:
name : myKmsPlugin
endpoint: unix:///tmp/socketfile.sock
cachesize: 100
Restart all
kube-apiserver
processes.Run the following command to force all secrets to be decrypted.
kubectl get secrets --all-namespaces -o json | kubectl replace -f -