Kubeflow Samples
Examples that demonstrate machine learning with Kubeflow
This section introduces the examples in the kubeflow/examples repository.
Financial time series
Last update 2019/12/20 Kubeflow v0.7
Train and serve a model for financial time series analysis using TensorFlow on GCP.
GitHub issue summarization
Last update 2019/12/17 Kubeflow v0.3.0-rc.3
Infer summaries of GitHub issues from the descriptions, using a Sequence to Sequence natural language processing model.You can run the tutorial in a Jupyter notebook or using TFJob. You use Seldon Core to serve the model.
MNIST image classification
Last update 2020/02/10
Train and serve an image classification model using the MNIST dataset.You can choose to train the model locally, using GCP, or using Amazon S3. Serve the model using TensorFlow.
Object detection - cats and dogs
Last update 2019/08/15
Train a distributed model for recognizing breeds of cats and dogs with the TensorFlow Object Detection API. Serve the model using TensorFlow.
PyTorch MNIST
Last update 2019/07/25
Train a distributed PyTorch model on GCP and serve the model with Seldon Core.
Ames housing value prediction
Last update 2019/02/12
Train an XGBoost model using the Kaggle Ames Housing Prices prediction on GCP.Use Seldon Core to serve the model locally, or GCP to serve it in the cloud.
Semantic code search
Last update 2019/01/15 Kubeflow 0.3
Use a Sequence to Sequence natural language processing model to perform a semantic code search.This tutorial runs in a Jupyter notebook and uses Google Cloud Platform (GCP).
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.
Last modified 10.02.2020: Fixes a link in the samples page (#1629) (f1dd41b5)