Model 类(函数式 API)

在函数式 API 中,给定一些输入张量和输出张量,可以通过以下方式实例化一个 Model

  1. from keras.models import Model
  2. from keras.layers import Input, Dense
  3. a = Input(shape=(32,))
  4. b = Dense(32)(a)
  5. model = Model(inputs=a, outputs=b)

这个模型将包含从 ab 的计算的所有网络层。

在多输入或多输出模型的情况下,你也可以使用列表:

  1. model = Model(inputs=[a1, a2], outputs=[b1, b3, b3])

有关 Model 的详细介绍,请阅读 Keras 函数式 API 指引

Model 类模型方法

compile

  1. compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)

用于配置训练模型。

参数

  • optimizer: 字符串(优化器名)或者优化器实例。详见 optimizers
  • loss: 字符串(目标函数名)或目标函数。详见 losses。如果模型具有多个输出,则可以通过传递损失函数的字典或列表,在每个输出上使用不同的损失。模型将最小化的损失值将是所有单个损失的总和。
  • metrics: 在训练和测试期间的模型评估标准。通常你会使用 metrics = ['accuracy']。要为多输出模型的不同输出指定不同的评估标准,还可以传递一个字典,如 metrics = {'output_a':'accuracy'}
  • loss_weights: 可选的指定标量系数(Python 浮点数)的列表或字典,用以衡量损失函数对不同的模型输出的贡献。模型将最小化的误差值是由 lossweights 系数加权的加权总和_误差。如果是列表,那么它应该是与模型输出相对应的 1:1 映射。如果是张量,那么应该把输出的名称(字符串)映到标量系数。
  • sample_weight_mode: 如果你需要执行按时间步采样权重(2D 权重),请将其设置为 temporal。默认为 None,为采样权重(1D)。如果模型有多个输出,则可以通过传递 mode 的字典或列表,以在每个输出上使用不同的 sample_weight_mode
  • weighted_metrics: 在训练和测试期间,由 sample_weight 或 class_weight 评估和加权的度量标准列表。
  • target_tensors: 默认情况下,Keras 将为模型的目标创建一个占位符,在训练过程中将使用目标数据。相反,如果你想使用自己的目标张量(反过来说,Keras 在训练期间不会载入这些目标张量的外部 Numpy 数据),您可以通过 target_tensors 参数指定它们。它可以是单个张量(单输出模型),张量列表,或一个映射输出名称到目标张量的字典。
  • **kwargs: 当使用 Theano/CNTK 后端时,这些参数被传入 K.function。当使用 TensorFlow 后端时,这些参数被传递到 tf.Session.run

异常

  • ValueError: 如果 optimizer, loss, metricssample_weight_mode 这些参数不合法。

fit

  1. fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)

以给定数量的轮次(数据集上的迭代)训练模型。

参数

  • x: 训练数据的 Numpy 数组(如果模型只有一个输入),或者是 Numpy 数组的列表(如果模型有多个输入)。如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是 None(默认)。
  • y: 目标(标签)数据的 Numpy 数组(如果模型只有一个输出),或者是 Numpy 数组的列表(如果模型有多个输出)。如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是 None(默认)。
  • batch_size: 整数或 None。每次梯度更新的样本数。如果未指定,默认为 32。
  • epochs: 整数。训练模型迭代轮次。一个轮次是在整个 xy 上的一轮迭代。请注意,与 initial_epoch 一起,epochs 被理解为 「最终轮次」。模型并不是训练了 epochs 轮,而是到第 epochs 轮停止训练。
  • verbose: 0, 1 或 2。日志显示模式。0 = 安静模式, 1 = 进度条, 2 = 每轮一行。
  • callbacks: 一系列的 keras.callbacks.Callback 实例。一系列可以在训练时使用的回调函数。详见 callbacks
  • validation_split: 0 和 1 之间的浮点数。用作验证集的训练数据的比例。模型将分出一部分不会被训练的验证数据,并将在每一轮结束时评估这些验证数据的误差和任何其他模型指标。验证数据是混洗之前 xy 数据的最后一部分样本中。
  • validation_data: 元组 (x_val,y_val) 或元组 (x_val,y_val,val_sample_weights),用来评估损失,以及在每轮结束时的任何模型度量指标。模型将不会在这个数据上进行训练。这个参数会覆盖 validation_split
  • shuffle: 布尔值(是否在每轮迭代之前混洗数据)或者 字符串 (batch)。batch 是处理 HDF5 数据限制的特殊选项,它对一个 batch 内部的数据进行混洗。当 steps_per_epochNone 时,这个参数无效。
  • class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
  • sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为 (samples, sequence_length) 的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在 compile() 中指定 sample_weight_mode="temporal"
  • initial_epoch: 整数。开始训练的轮次(有助于恢复之前的训练)。
  • steps_per_epoch: 整数或 None。在声明一个轮次完成并开始下一个轮次之前的总步数(样品批次)。使用 TensorFlow 数据张量等输入张量进行训练时,默认值 None 等于数据集中样本的数量除以 batch 的大小,如果无法确定,则为 1。
  • validation_steps: 只有在指定了 steps_per_epoch 时才有用。停止前要验证的总步数(批次样本)。

返回

一个 History 对象。其 History.history 属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。

异常

  • RuntimeError: 如果模型从未编译。
  • ValueError: 在提供的输入数据与模型期望的不匹配的情况下。

evaluate

  1. evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None)

在测试模式下返回模型的误差值和评估标准值。

计算是分批进行的。

参数

  • x: 测试数据的 Numpy 数组(如果模型只有一个输入),或者是 Numpy 数组的列表(如果模型有多个输入)。如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是 None(默认)。
  • y: 目标(标签)数据的 Numpy 数组,或 Numpy 数组的列表(如果模型具有多个输出)。如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是 None(默认)。
  • batch_size: 整数或 None。每次评估的样本数。如果未指定,默认为 32。
  • verbose: 0 或 1。日志显示模式。0 = 安静模式,1 = 进度条。
  • sample_weight: 测试样本的可选 Numpy 权重数组,用于对损失函数进行加权。您可以传递与输入样本长度相同的扁平(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,传递尺寸为 (samples, sequence_length) 的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在 compile() 中指定 sample_weight_mode="temporal"
  • steps: 整数或 None。声明评估结束之前的总步数(批次样本)。默认值 None

返回

标量测试误差(如果模型只有一个输出且没有评估标准)或标量列表(如果模型具有多个输出 和/或 评估指标)。属性 model.metrics_names 将提供标量输出的显示标签。

predict

  1. predict(x, batch_size=None, verbose=0, steps=None)

为输入样本生成输出预测。

计算是分批进行的

参数

  • x: 输入数据,Numpy 数组(或者 Numpy 数组的列表,如果模型有多个输出)。
  • batch_size: 整数。如未指定,默认为 32。
  • verbose: 日志显示模式,0 或 1。
  • steps: 声明预测结束之前的总步数(批次样本)。默认值 None

返回

预测的 Numpy 数组(或数组列表)。

异常

  • ValueError: 在提供的输入数据与模型期望的不匹配的情况下,或者在有状态的模型接收到的样本不是 batch size 的倍数的情况下。

train_on_batch

  1. train_on_batch(x, y, sample_weight=None, class_weight=None)

运行一批样品的单次梯度更新。

_参数

  • x: 训练数据的 Numpy 数组(如果模型只有一个输入),或者是 Numpy 数组的列表(如果模型有多个输入)。如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。
  • y: 目标(标签)数据的 Numpy 数组,或 Numpy 数组的列表(如果模型具有多个输出)。如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。
  • sample_weight: 可选数组,与 x 长度相同,包含应用到模型损失函数的每个样本的权重。如果是时域数据,你可以传递一个尺寸为 (samples, sequence_length) 的 2D 数组,为每一个样本的每一个时间步应用不同的权重。在这种情况下,你应该在 compile() 中指定 sample_weight_mode="temporal"
  • class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,以在训练时对模型的损失函数加权。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。

返回

标量训练误差(如果模型只有一个输入且没有评估标准),或者标量的列表(如果模型有多个输出 和/或 评估标准)。属性 model.metrics_names 将提供标量输出的显示标签。

test_on_batch

  1. test_on_batch(x, y, sample_weight=None)

在一批样本上测试模型。

参数

  • x: 测试数据的 Numpy 数组(如果模型只有一个输入),或者是 Numpy 数组的列表(如果模型有多个输入)。如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。
  • y: 目标(标签)数据的 Numpy 数组,或 Numpy 数组的列表(如果模型具有多个输出)。如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。
  • sample_weight: 可选数组,与 x 长度相同,包含应用到模型损失函数的每个样本的权重。如果是时域数据,你可以传递一个尺寸为 (samples, sequence_length) 的 2D 数组,为每一个样本的每一个时间步应用不同的权重。

返回

标量测试误差(如果模型只有一个输入且没有评估标准),或者标量的列表(如果模型有多个输出 和/或 评估标准)。属性 model.metrics_names 将提供标量输出的显示标签。

predict_on_batch

  1. predict_on_batch(x)

返回一批样本的模型预测值。

参数

  • x: 输入数据,Numpy 数组。

返回

预测值的 Numpy 数组(或数组列表)。

fit_generator

  1. fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)

使用 Python 生成器(或 Sequence 实例)逐批生成的数据,按批次训练模型。

生成器与模型并行运行,以提高效率。例如,这可以让你在 CPU 上对图像进行实时数据增强,以在 GPU 上训练模型。

keras.utils.Sequence 的使用可以保证数据的顺序,以及当 use_multiprocessing=True 时 ,保证每个输入在每个 epoch 只使用一次。

参数

  • generator: 一个生成器,或者一个 Sequence (keras.utils.Sequence) 对象的实例, 以在使用多进程时避免数据的重复。 生成器的输出应该为以下之一:

    • 一个 (inputs, targets) 元组
    • 一个 (inputs, targets, sample_weights) 元组。这个元组(生成器的单个输出)组成了单个的 batch。因此,这个元组中的所有数组长度必须相同(与这一个 batch 的大小相等)。不同的 batch 可能大小不同。例如,一个 epoch 的最后一个 batch 往往比其他 batch 要小,如果数据集的尺寸不能被 batch size 整除。生成器将无限地在数据集上循环。当运行到第 steps_per_epoch 时,记一个 epoch 结束。
  • steps_per_epoch: 在声明一个 epoch 完成并开始下一个 epoch 之前从 generator 产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。对于 Sequence,它是可选的:如果未指定,将使用len(generator) 作为步数。

  • epochs: 整数。训练模型的迭代总轮数。一个 epoch 是对所提供的整个数据的一轮迭代,如 steps_per_epoch 所定义。注意,与 initial_epoch 一起使用,epoch 应被理解为「最后一轮」。模型没有经历由 epochs 给出的多次迭代的训练,而仅仅是直到达到索引 epoch 的轮次。

  • verbose: 0, 1 或 2。日志显示模式。0 = 安静模式, 1 = 进度条, 2 = 每轮一行。
  • callbacks: keras.callbacks.Callback 实例的列表。在训练时调用的一系列回调函数。
  • validation_data: 它可以是以下之一:

    • 验证数据的生成器或 Sequence 实例
    • 一个 (inputs, targets) 元组
    • 一个 (inputs, targets, sample_weights) 元组。在每个 epoch 结束时评估损失和任何模型指标。该模型不会对此数据进行训练。
  • validation_steps: 仅当 validation_data 是一个生成器时才可用。在停止前 generator 生成的总步数(样本批数)。对于 Sequence,它是可选的:如果未指定,将使用 len(generator) 作为步数。

  • class_weight: 可选的将类索引(整数)映射到权重(浮点)值的字典,用于加权损失函数(仅在训练期间)。这可以用来告诉模型「更多地关注」来自代表性不足的类的样本。

  • max_queue_size: 整数。生成器队列的最大尺寸。如未指定,max_queue_size 将默认为 10。
  • workers: 整数。使用的最大进程数量,如果使用基于进程的多线程。如未指定,workers 将默认为 1。如果为 0,将在主线程上执行生成器。
  • use_multiprocessing: 布尔值。如果 True,则使用基于进程的多线程。如未指定, use_multiprocessing 将默认为 False。请注意,由于此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
  • shuffle: 是否在每轮迭代之前打乱 batch 的顺序。只能与 Sequence (keras.utils.Sequence) 实例同用。
  • initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。

返回

一个 History 对象。其 History.history 属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。

异常

  • ValueError: 如果生成器生成的数据格式不正确。

  1. def generate_arrays_from_file(path):
  2. while True:
  3. with open(path) as f:
  4. for line in f:
  5. # 从文件中的每一行生成输入数据和标签的 numpy 数组,
  6. x1, x2, y = process_line(line)
  7. yield ({'input_1': x1, 'input_2': x2}, {'output': y})
  8. f.close()
  9. model.fit_generator(generate_arrays_from_file('/my_file.txt'),
  10. steps_per_epoch=10000, epochs=10)

evaluate_generator

  1. evaluate_generator(generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

在数据生成器上评估模型。

这个生成器应该返回与 test_on_batch 所接收的同样的数据。

参数

  • generator: 一个生成 (inputs, targets)(inputs, targets, sample_weights) 的生成器,或一个 Sequence (keras.utils.Sequence) 对象的实例,以避免在使用多进程时数据的重复。
  • steps: 在声明一个 epoch 完成并开始下一个 epoch 之前从 generator 产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。对于 Sequence,它是可选的:如果未指定,将使用len(generator) 作为步数。
  • max_queue_size: 生成器队列的最大尺寸。
  • workers: 整数。使用的最大进程数量,如果使用基于进程的多线程。如未指定,workers 将默认为 1。如果为 0,将在主线程上执行生成器。
  • use_multiprocessing: 布尔值。如果 True,则使用基于进程的多线程。请注意,由于此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
  • verbose: 日志显示模式,0 或 1。

返回

标量测试误差(如果模型只有一个输入且没有评估标准),或者标量的列表(如果模型有多个输出 和/或 评估标准)。属性 model.metrics_names 将提供标量输出的显示标签。

异常

  • ValueError: 如果生成器生成的数据格式不正确。

predict_generator

  1. predict_generator(generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

为来自数据生成器的输入样本生成预测。

这个生成器应该返回与 predict_on_batch 所接收的同样的数据。

参数

  • generator: 生成器,返回批量输入样本,或一个 Sequence (keras.utils.Sequence) 对象的实例,以避免在使用多进程时数据的重复。
  • steps: 在声明一个 epoch 完成并开始下一个 epoch 之前从 generator 产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。对于 Sequence,它是可选的:如果未指定,将使用len(generator) 作为步数。
  • max_queue_size: 生成器队列的最大尺寸。
  • workers: 整数。使用的最大进程数量,如果使用基于进程的多线程。如未指定,workers 将默认为 1。如果为 0,将在主线程上执行生成器。
  • use_multiprocessing: 如果 True,则使用基于进程的多线程。请注意,由于此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
  • verbose: 日志显示模式,0 或 1。

返回

预测值的 Numpy 数组(或数组列表)。

异常

  • ValueError: 如果生成器生成的数据格式不正确。

get_layer

  1. get_layer(self, name=None, index=None)

根据名称(唯一)或索引值查找网络层。

如果同时提供了 nameindex,则 index 将优先。

索引值来自于水平图遍历的顺序(自下而上)。

参数

  • name: 字符串,层的名字。
  • index: 整数,层的索引。

返回

一个层实例。

异常

  • ValueError: 如果层的名称或索引不正确。