正则项
正则项在优化过程中层的参数或层的激活值添加惩罚项,这些惩罚项将与损失函数一起作为网络的最终优化目标
惩罚项基于层进行惩罚,目前惩罚项的接口与层有关,但Dense, Conv1D, Conv2D, Conv3D
具有共同的接口。
这些层有三个关键字参数以施加正则项:
kernel_regularizer
:施加在权重上的正则项,为keras.regularizer.Regularizer
对象bias_regularizer
:施加在偏置向量上的正则项,为keras.regularizer.Regularizer
对象activity_regularizer
:施加在输出上的正则项,为keras.regularizer.Regularizer
对象
例子
from keras import regularizers
model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01)))
可用正则项
keras.regularizers.l1(0.)
keras.regularizers.l2(0.)
keras.regularizers.l1_l2(0.)
开发新的正则项
任何以权重矩阵作为输入并返回单个数值的函数均可以作为正则项,示例:
from keras import backend as K
def l1_reg(weight_matrix):
return 0.01 * K.sum(K.abs(weight_matrix))
model.add(Dense(64, input_dim=64,
kernel_regularizer=l1_reg)
可参考源代码keras/regularizer.py
当前内容版权归 MoyanZitto 或其关联方所有,如需对内容或内容相关联开源项目进行关注与资助,请访问 MoyanZitto .