Usage of metrics
A metric is a function that is used to judge the performance of your model. Metric functions are to be supplied in the metrics
parameter when a model is compiled.
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['mae', 'acc'])
from keras import metrics
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=[metrics.mae, metrics.categorical_accuracy])
A metric function is similar to a loss function, except that the results from evaluating a metric are not used when training the model. You may use any of the loss functions as a metric function.
You can either pass the name of an existing metric, or pass a Theano/TensorFlow symbolic function (see Custom metrics).
Arguments
- y_true: True labels. Theano/TensorFlow tensor.
- y_pred: Predictions. Theano/TensorFlow tensor of the same shape as y_true.
Returns
Single tensor value representing the mean of the output array across all datapoints.
Available metrics
accuracy
keras.metrics.accuracy(y_true, y_pred)
binary_accuracy
keras.metrics.binary_accuracy(y_true, y_pred, threshold=0.5)
categorical_accuracy
keras.metrics.categorical_accuracy(y_true, y_pred)
sparse_categorical_accuracy
keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
top_k_categorical_accuracy
keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=5)
sparse_top_k_categorical_accuracy
keras.metrics.sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)
cosine_proximity
keras.metrics.cosine_proximity(y_true, y_pred, axis=-1)
clone_metric
keras.metrics.clone_metric(metric)
Returns a clone of the metric if stateful, otherwise returns it as is.
clone_metrics
keras.metrics.clone_metrics(metrics)
Clones the given metric list/dict.
In addition to the metrics above, you may use any of the loss functions described in the loss function page as metrics.
Custom metrics
Custom metrics can be passed at the compilation step. Thefunction would need to take (y_true, y_pred)
as arguments and returna single tensor value.
import keras.backend as K
def mean_pred(y_true, y_pred):
return K.mean(y_pred)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])