- Keras backends
- What is a "backend"?
- Switching from one backend to another
- keras.json details
- Using the abstract Keras backend to write new code
- Backend functions
- Resets graph identifiers.
- set_epsilon
- floatx
- set_floatx
- cast_to_floatx
- image_data_format
- set_image_data_format
- learning_phase
- set_learning_phase
- clear_session
- is_sparse
- to_dense
- variable
- is_variable
- constant
- is_keras_tensor
- is_tensor
- placeholder
- is_placeholder
- shape
- int_shape
- ndim
- size
- dtype
- eval
- zeros
- ones
- eye
- zeros_like
- ones_like
- identity
- random_uniform_variable
- random_normal_variable
- count_params
- cast
- update
- update_add
- update_sub
- moving_average_update
- dot
- batch_dot
- transpose
- gather
- max
- min
- sum
- prod
- cumsum
- cumprod
- var
- std
- mean
- any
- all
- argmax
- argmin
- square
- abs
- sqrt
- exp
- log
- logsumexp
- round
- sign
- pow
- clip
- equal
- not_equal
- greater
- greater_equal
- less
- less_equal
- maximum
- minimum
- sin
- cos
- normalize_batch_in_training
- batch_normalization
- concatenate
- reshape
- permute_dimensions
- resize_images
- resize_volumes
- repeat_elements
- repeat
- arange
- tile
- flatten
- batch_flatten
- expand_dims
- squeeze
- temporal_padding
- spatial_2d_padding
- spatial_3d_padding
- stack
- one_hot
- reverse
- slice
- get_value
- batch_get_value
- set_value
- batch_set_value
- print_tensor
- function
- gradients
- stop_gradient
- rnn
- switch
- in_train_phase
- in_test_phase
- relu
- elu
- softmax
- softplus
- softsign
- categorical_crossentropy
- sparse_categorical_crossentropy
- binary_crossentropy
- sigmoid
- hard_sigmoid
- tanh
- dropout
- l2_normalize
- in_top_k
- conv1d
- conv2d
- conv2d_transpose
- separable_conv1d
- separable_conv2d
- depthwise_conv2d
- conv3d
- conv3d_transpose
- pool2d
- pool3d
- local_conv1d
- local_conv2d
- bias_add
- random_normal
- random_uniform
- random_binomial
- truncated_normal
- ctc_label_dense_to_sparse
- ctc_batch_cost
- ctc_decode
- control_dependencies
- map_fn
- foldl
- foldr
Keras backends
What is a "backend"?
Keras is a model-level library, providing high-level building blocks for developing deep learning models. It does not handle low-level operations such as tensor products, convolutions and so on itself. Instead, it relies on a specialized, well optimized tensor manipulation library to do so, serving as the "backend engine" of Keras. Rather than picking one single tensor library and making the implementation of Keras tied to that library, Keras handles the problem in a modular way, and several different backend engines can be plugged seamlessly into Keras.
At this time, Keras has three backend implementations available: the TensorFlow backend, the Theano backend, and the CNTK backend.
- TensorFlow is an open-source symbolic tensor manipulation framework developed by Google.
- Theano is an open-source symbolic tensor manipulation framework developed by LISA Lab at Université de Montréal.
- CNTK is an open-source toolkit for deep learning developed by Microsoft.
In the future, we are likely to add more backend options.
Switching from one backend to another
If you have run Keras at least once, you will find the Keras configuration file at:
$HOME/.keras/keras.json
If it isn't there, you can create it.
NOTE for Windows Users: Please replace $HOME
with %USERPROFILE%
.
The default configuration file looks like this:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
Simply change the field backend
to "theano"
, "tensorflow"
, or "cntk"
, and Keras will use the new configuration next time you run any Keras code.
You can also define the environment variable KERAS_BACKEND
and this willoverride what is defined in your config file :
KERAS_BACKEND=tensorflow python -c "from keras import backend"
Using TensorFlow backend.
In Keras it is possible to load more backends than "tensorflow"
, "theano"
, and "cntk"
. Keras can use external backends as well, and this can be performed by changing the keras.json
configuration file, and the "backend"
setting. Suppose you have a Python module called my_module
that you wanted to use as your external backend. The keras.json
configuration file would be changed as follows:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "my_package.my_module"
}
An external backend must be validated in order to be used, a valid backend must have the following functions: placeholder
, variable
and function
.
If an external backend is not valid due to missing a required entry, an error will be logged notifying which entry/entries are missing.
keras.json details
The keras.json
configuration file contains the following settings:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
You can change these settings by editing $HOME/.keras/keras.json
.
image_data_format
: String, either"channels_last"
or"channels_first"
. It specifies which data format convention Keras will follow. (keras.backend.image_data_format()
returns it.)- For 2D data (e.g. image),
"channels_last"
assumes(rows, cols, channels)
while"channels_first"
assumes(channels, rows, cols)
. - For 3D data,
"channels_last"
assumes(conv_dim1, conv_dim2, conv_dim3, channels)
while"channels_first"
assumes(channels, conv_dim1, conv_dim2, conv_dim3)
. epsilon
: Float, a numeric fuzzing constant used to avoid dividing by zero in some operations.floatx
: String,"float16"
,"float32"
, or"float64"
. Default float precision.backend
: String,"tensorflow"
,"theano"
, or"cntk"
.
Using the abstract Keras backend to write new code
If you want the Keras modules you write to be compatible with both Theano (th
) and TensorFlow (tf
), you have to write them via the abstract Keras backend API. Here's an intro.
You can import the backend module via:
from keras import backend as K
The code below instantiates an input placeholder. It's equivalent to tf.placeholder()
or th.tensor.matrix()
, th.tensor.tensor3()
, etc.
inputs = K.placeholder(shape=(2, 4, 5))
# also works:
inputs = K.placeholder(shape=(None, 4, 5))
# also works:
inputs = K.placeholder(ndim=3)
The code below instantiates a variable. It's equivalent to tf.Variable()
or th.shared()
.
import numpy as np
val = np.random.random((3, 4, 5))
var = K.variable(value=val)
# all-zeros variable:
var = K.zeros(shape=(3, 4, 5))
# all-ones:
var = K.ones(shape=(3, 4, 5))
Most tensor operations you will need can be done as you would in TensorFlow or Theano:
# Initializing Tensors with Random Numbers
b = K.random_uniform_variable(shape=(3, 4), low=0, high=1) # Uniform distribution
c = K.random_normal_variable(shape=(3, 4), mean=0, scale=1) # Gaussian distribution
d = K.random_normal_variable(shape=(3, 4), mean=0, scale=1)
# Tensor Arithmetic
a = b + c * K.abs(d)
c = K.dot(a, K.transpose(b))
a = K.sum(b, axis=1)
a = K.softmax(b)
a = K.concatenate([b, c], axis=-1)
# etc...
Backend functions
backend
keras.backend.backend()
Returns the name of the current backend (e.g. "tensorflow").
Returns
String, the name of the backend Keras is currently using.
Example
>>> keras.backend.backend()
'tensorflow'
symbolic
keras.backend.symbolic(func)
Decorator used in TensorFlow 2.0 to enter the Keras graph.
Arguments
- func: Function to decorate.
Returns
Decorated function.
eager
keras.backend.eager(func)
Decorator used in TensorFlow 2.0 to exit the Keras graph.
Arguments
- func: Function to decorate.
Returns
Decorated function.
get_uid
keras.backend.get_uid(prefix='')
Provides a unique UID given a string prefix.
Arguments
- prefix: string.
Returns
An integer.
Example
>>> keras.backend.get_uid('dense')
1
>>> keras.backend.get_uid('dense')
2
manual_variable_initialization
keras.backend.manual_variable_initialization(value)
Sets the manual variable initialization flag.
This boolean flag determines whethervariables should be initializedas they are instantiated (default), or ifthe user should handle the initialization.
Arguments
- value: Python boolean.
epsilon
keras.backend.epsilon()
Returns the value of the fuzz factor used in numeric expressions.
Returns
A float.
Example
>>> keras.backend.epsilon()
1e-07
reset_uids
keras.backend.reset_uids()
Resets graph identifiers.
set_epsilon
keras.backend.set_epsilon(e)
Sets the value of the fuzz factor used in numeric expressions.
Arguments
- e: float. New value of epsilon.
Example
>>> from keras import backend as K
>>> K.epsilon()
1e-07
>>> K.set_epsilon(1e-05)
>>> K.epsilon()
1e-05
floatx
keras.backend.floatx()
Returns the default float type, as a string.(e.g. 'float16', 'float32', 'float64').
Returns
String, the current default float type.
Example
>>> keras.backend.floatx()
'float32'
set_floatx
keras.backend.set_floatx(floatx)
Sets the default float type.
Arguments
- floatx: String, 'float16', 'float32', or 'float64'.
Example
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> K.set_floatx('float16')
>>> K.floatx()
'float16'
cast_to_floatx
keras.backend.cast_to_floatx(x)
Cast a Numpy array to the default Keras float type.
Arguments
- x: Numpy array.
Returns
The same Numpy array, cast to its new type.
Example
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> arr = numpy.array([1.0, 2.0], dtype='float64')
>>> arr.dtype
dtype('float64')
>>> new_arr = K.cast_to_floatx(arr)
>>> new_arr
array([ 1., 2.], dtype=float32)
>>> new_arr.dtype
dtype('float32')
image_data_format
keras.backend.image_data_format()
Returns the default image data format convention.
Returns
A string, either 'channels_first'
or 'channels_last'
Example
>>> keras.backend.image_data_format()
'channels_first'
set_image_data_format
keras.backend.set_image_data_format(data_format)
Sets the value of the data format convention.
Arguments
- data_format: string.
'channels_first'
or'channels_last'
.
Example
>>> from keras import backend as K
>>> K.image_data_format()
'channels_first'
>>> K.set_image_data_format('channels_last')
>>> K.image_data_format()
'channels_last'
learning_phase
keras.backend.learning_phase()
Returns the learning phase flag.
The learning phase flag is a bool tensor (0 = test, 1 = train)to be passed as input to any Keras functionthat uses a different behavior at train time and test time.
Returns
Learning phase (scalar integer tensor or Python integer).
set_learning_phase
keras.backend.set_learning_phase(value)
Sets the learning phase to a fixed value.
Arguments
- value: Learning phase value, either 0 or 1 (integers).
Raises
- ValueError: if
value
is neither0
nor1
.
clear_session
keras.backend.clear_session()
Destroys the current Keras graph and creates a new one.
Useful to avoid clutter from old models / layers.
is_sparse
keras.backend.is_sparse(tensor)
Returns whether a tensor is a sparse tensor.
Arguments
- tensor: A tensor instance.
Returns
A boolean.
Example
>>> from keras import backend as K
>>> a = K.placeholder((2, 2), sparse=False)
>>> print(K.is_sparse(a))
False
>>> b = K.placeholder((2, 2), sparse=True)
>>> print(K.is_sparse(b))
True
to_dense
keras.backend.to_dense(tensor)
Converts a sparse tensor into a dense tensor and returns it.
Arguments
- tensor: A tensor instance (potentially sparse).
Returns
A dense tensor.
Examples
>>> from keras import backend as K
>>> b = K.placeholder((2, 2), sparse=True)
>>> print(K.is_sparse(b))
True
>>> c = K.to_dense(b)
>>> print(K.is_sparse(c))
False
variable
keras.backend.variable(value, dtype=None, name=None, constraint=None)
Instantiates a variable and returns it.
Arguments
- value: Numpy array, initial value of the tensor.
- dtype: Tensor type.
- name: Optional name string for the tensor.
- constraint: Optional projection function to be applied to the variable after an optimizer update.
Returns
A variable instance (with Keras metadata included).
Examples
>>> from keras import backend as K
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val, dtype='float64', name='example_var')
>>> K.dtype(kvar)
'float64'
>>> print(kvar)
example_var
>>> K.eval(kvar)
array([[ 1., 2.],
[ 3., 4.]])
is_variable
keras.backend.is_variable(x)
constant
keras.backend.constant(value, dtype=None, shape=None, name=None)
Creates a constant tensor.
Arguments
- value: A constant value (or list)
- dtype: The type of the elements of the resulting tensor.
- shape: Optional dimensions of resulting tensor.
- name: Optional name for the tensor.
Returns
A Constant Tensor.
is_keras_tensor
keras.backend.is_keras_tensor(x)
Returns whether x
is a Keras tensor.
A "Keras tensor" is a tensor that was returned by a Keras layer,(Layer
class) or by Input
.
Arguments
- x: A candidate tensor.
Returns
A boolean: Whether the argument is a Keras tensor.
Raises
- ValueError: In case
x
is not a symbolic tensor.
Examples
>>> from keras import backend as K
>>> from keras.layers import Input, Dense
>>> np_var = numpy.array([1, 2])
>>> K.is_keras_tensor(np_var) # A numpy array is not a symbolic tensor.
ValueError
>>> k_var = tf.placeholder('float32', shape=(1,1))
>>> # A variable indirectly created outside of keras is not a Keras tensor.
>>> K.is_keras_tensor(k_var)
False
>>> keras_var = K.variable(np_var)
>>> # A variable created with the keras backend is not a Keras tensor.
>>> K.is_keras_tensor(keras_var)
False
>>> keras_placeholder = K.placeholder(shape=(2, 4, 5))
>>> # A placeholder is not a Keras tensor.
>>> K.is_keras_tensor(keras_placeholder)
False
>>> keras_input = Input([10])
>>> K.is_keras_tensor(keras_input) # An Input is a Keras tensor.
True
>>> keras_layer_output = Dense(10)(keras_input)
>>> # Any Keras layer output is a Keras tensor.
>>> K.is_keras_tensor(keras_layer_output)
True
is_tensor
keras.backend.is_tensor(x)
placeholder
keras.backend.placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None)
Instantiates a placeholder tensor and returns it.
Arguments
- shape: Shape of the placeholder (integer tuple, may include
None
entries). - ndim: Number of axes of the tensor. At least one of {
shape
,ndim
} must be specified. If both are specified,shape
is used. - dtype: Placeholder type.
- sparse: Boolean, whether the placeholder should have a sparse type.
- name: Optional name string for the placeholder.
Returns
Tensor instance (with Keras metadata included).
Examples
>>> from keras import backend as K
>>> input_ph = K.placeholder(shape=(2, 4, 5))
>>> input_ph._keras_shape
(2, 4, 5)
>>> input_ph
<tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32>
is_placeholder
keras.backend.is_placeholder(x)
Returns whether x
is a placeholder.
Arguments
- x: A candidate placeholder.
Returns
Boolean.
shape
keras.backend.shape(x)
Returns the symbolic shape of a tensor or variable.
Arguments
- x: A tensor or variable.
Returns
A symbolic shape (which is itself a tensor).
Examples
# TensorFlow example
>>> from keras import backend as K
>>> tf_session = K.get_session()
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> inputs = keras.backend.placeholder(shape=(2, 4, 5))
>>> K.shape(kvar)
<tf.Tensor 'Shape_8:0' shape=(2,) dtype=int32>
>>> K.shape(inputs)
<tf.Tensor 'Shape_9:0' shape=(3,) dtype=int32>
# To get integer shape (Instead, you can use K.int_shape(x))
>>> K.shape(kvar).eval(session=tf_session)
array([2, 2], dtype=int32)
>>> K.shape(inputs).eval(session=tf_session)
array([2, 4, 5], dtype=int32)
int_shape
keras.backend.int_shape(x)
Returns the shape of tensor or variable as a tuple of int or None entries.
Arguments
- x: Tensor or variable.
Returns
A tuple of integers (or None entries).
Examples
>>> from keras import backend as K
>>> inputs = K.placeholder(shape=(2, 4, 5))
>>> K.int_shape(inputs)
(2, 4, 5)
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> K.int_shape(kvar)
(2, 2)
Numpy implementation
def int_shape(x):
return x.shape
ndim
keras.backend.ndim(x)
Returns the number of axes in a tensor, as an integer.
Arguments
- x: Tensor or variable.
Returns
Integer (scalar), number of axes.
Examples
>>> from keras import backend as K
>>> inputs = K.placeholder(shape=(2, 4, 5))
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> K.ndim(inputs)
3
>>> K.ndim(kvar)
2
Numpy implementation
def ndim(x):
return x.ndim
size
keras.backend.size(x, name=None)
Returns the size of a tensor.
Arguments
- x: Tensor or variable.
- name: A name for the operation (optional).
Returns
Size of the tensor.
Examples
>>> from keras import backend as K
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> K.size(inputs)
<tf.Tensor: id=9, shape=(), dtype=int32, numpy=4>
dtype
keras.backend.dtype(x)
Returns the dtype of a Keras tensor or variable, as a string.
Arguments
- x: Tensor or variable.
Returns
String, dtype of x
.
Examples
>>> from keras import backend as K
>>> K.dtype(K.placeholder(shape=(2,4,5)))
'float32'
>>> K.dtype(K.placeholder(shape=(2,4,5), dtype='float32'))
'float32'
>>> K.dtype(K.placeholder(shape=(2,4,5), dtype='float64'))
'float64'
# Keras variable
>>> kvar = K.variable(np.array([[1, 2], [3, 4]]))
>>> K.dtype(kvar)
'float32_ref'
>>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32')
>>> K.dtype(kvar)
'float32_ref'
Numpy implementation
def dtype(x):
return x.dtype.name
eval
keras.backend.eval(x)
Evaluates the value of a tensor.
Arguments
- x: A tensor.
Returns
A Numpy array.
Examples
>>> from keras import backend as K
>>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32')
>>> K.eval(kvar)
array([[ 1., 2.],
[ 3., 4.]], dtype=float32)
Numpy implementation
def eval(x):
return x
zeros
keras.backend.zeros(shape, dtype=None, name=None)
Instantiates an all-zeros variable and returns it.
Arguments
- shape: Tuple of integers, shape of returned Keras variable
- dtype: String, data type of returned Keras variable
- name: String, name of returned Keras variable
Returns
A variable (including Keras metadata), filled with 0.0
.Note that if shape
was symbolic, we cannot return a variable,and will return a dynamically-shaped tensor instead.
Example
>>> from keras import backend as K
>>> kvar = K.zeros((3,4))
>>> K.eval(kvar)
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]], dtype=float32)
Numpy implementation
def zeros(shape, dtype=floatx(), name=None):
return np.zeros(shape, dtype=dtype)
ones
keras.backend.ones(shape, dtype=None, name=None)
Instantiates an all-ones variable and returns it.
Arguments
- shape: Tuple of integers, shape of returned Keras variable.
- dtype: String, data type of returned Keras variable.
- name: String, name of returned Keras variable.
Returns
A Keras variable, filled with 1.0
.Note that if shape
was symbolic, we cannot return a variable,and will return a dynamically-shaped tensor instead.
Example
>>> from keras import backend as K
>>> kvar = K.ones((3,4))
>>> K.eval(kvar)
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]], dtype=float32)
Numpy implementation
def ones(shape, dtype=floatx(), name=None):
return np.ones(shape, dtype=dtype)
eye
keras.backend.eye(size, dtype=None, name=None)
Instantiate an identity matrix and returns it.
Arguments
- size: Tuple, number of rows and columns. If Integer, number of rows.
- dtype: String, data type of returned Keras variable.
- name: String, name of returned Keras variable.
Returns
A Keras variable, an identity matrix.
Example
>>> from keras import backend as K
>>> K.eval(K.eye(3))
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]], dtype=float32)
>>> K.eval(K.eye((2, 3)))
array([[1., 0., 0.],
[0., 1., 0.]], dtype=float32)
Numpy implementation
def eye(size, dtype=None, name=None):
if isinstance(size, (list, tuple)):
n, m = size
else:
n, m = size, size
return np.eye(n, m, dtype=dtype)
zeros_like
keras.backend.zeros_like(x, dtype=None, name=None)
Instantiates an all-zeros variable of the same shape as another tensor.
Arguments
- x: Keras variable or Keras tensor.
- dtype: String, dtype of returned Keras variable. None uses the dtype of x.
- name: String, name for the variable to create.
Returns
A Keras variable with the shape of x filled with zeros.
Example
>>> from keras import backend as K
>>> kvar = K.variable(np.random.random((2,3)))
>>> kvar_zeros = K.zeros_like(kvar)
>>> K.eval(kvar_zeros)
array([[ 0., 0., 0.],
[ 0., 0., 0.]], dtype=float32)
Numpy implementation
def zeros_like(x, dtype=floatx(), name=None):
return np.zeros_like(x, dtype=dtype)
ones_like
keras.backend.ones_like(x, dtype=None, name=None)
Instantiates an all-ones variable of the same shape as another tensor.
Arguments
- x: Keras variable or tensor.
- dtype: String, dtype of returned Keras variable. None uses the dtype of x.
- name: String, name for the variable to create.
Returns
A Keras variable with the shape of x filled with ones.
Example
>>> from keras import backend as K
>>> kvar = K.variable(np.random.random((2,3)))
>>> kvar_ones = K.ones_like(kvar)
>>> K.eval(kvar_ones)
array([[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=float32)
Numpy implementation
def ones_like(x, dtype=floatx(), name=None):
return np.ones_like(x, dtype=dtype)
identity
keras.backend.identity(x, name=None)
Returns a tensor with the same content as the input tensor.
Arguments
- x: The input tensor.
- name: String, name for the variable to create.
Returns
A tensor of the same shape, type and content.
random_uniform_variable
keras.backend.random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None)
Instantiates a variable with values drawn from a uniform distribution.
Arguments
- shape: Tuple of integers, shape of returned Keras variable.
- low: Float, lower boundary of the output interval.
- high: Float, upper boundary of the output interval.
- dtype: String, dtype of returned Keras variable.
- name: String, name of returned Keras variable.
- seed: Integer, random seed.
Returns
A Keras variable, filled with drawn samples.
Example
# TensorFlow example
>>> kvar = K.random_uniform_variable((2,3), 0, 1)
>>> kvar
<tensorflow.python.ops.variables.Variable object at 0x10ab40b10>
>>> K.eval(kvar)
array([[ 0.10940075, 0.10047495, 0.476143 ],
[ 0.66137183, 0.00869417, 0.89220798]], dtype=float32)
Numpy implementation
def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None):
return (high - low) * np.random.random(shape).astype(dtype) + low
random_normal_variable
keras.backend.random_normal_variable(shape, mean, scale, dtype=None, name=None, seed=None)
Instantiates a variable with values drawn from a normal distribution.
Arguments
- shape: Tuple of integers, shape of returned Keras variable.
- mean: Float, mean of the normal distribution.
- scale: Float, standard deviation of the normal distribution.
- dtype: String, dtype of returned Keras variable.
- name: String, name of returned Keras variable.
- seed: Integer, random seed.
Returns
A Keras variable, filled with drawn samples.
Example
# TensorFlow example
>>> kvar = K.random_normal_variable((2,3), 0, 1)
>>> kvar
<tensorflow.python.ops.variables.Variable object at 0x10ab12dd0>
>>> K.eval(kvar)
array([[ 1.19591331, 0.68685907, -0.63814116],
[ 0.92629528, 0.28055015, 1.70484698]], dtype=float32)
Numpy implementation
def random_normal_variable(shape, mean, scale, dtype=None, name=None, seed=None):
return scale * np.random.randn(*shape).astype(dtype) + mean
count_params
keras.backend.count_params(x)
Returns the static number of elements in a Keras variable or tensor.
Arguments
- x: Keras variable or tensor.
Returns
Integer, the number of elements in x
, i.e., the product of thearray's static dimensions.
Example
>>> kvar = K.zeros((2,3))
>>> K.count_params(kvar)
6
>>> K.eval(kvar)
array([[ 0., 0., 0.],
[ 0., 0., 0.]], dtype=float32)
Numpy implementation
def count_params(x):
return x.size
cast
keras.backend.cast(x, dtype)
Casts a tensor to a different dtype and returns it.
You can cast a Keras variable but it still returns a Keras tensor.
Arguments
- x: Keras tensor (or variable).
- dtype: String, either (
'float16'
,'float32'
, or'float64'
).
Returns
Keras tensor with dtype dtype
.
Example
>>> from keras import backend as K
>>> input = K.placeholder((2, 3), dtype='float32')
>>> input
<tf.Tensor 'Placeholder_2:0' shape=(2, 3) dtype=float32>
# It doesn't work in-place as below.
>>> K.cast(input, dtype='float16')
<tf.Tensor 'Cast_1:0' shape=(2, 3) dtype=float16>
>>> input
<tf.Tensor 'Placeholder_2:0' shape=(2, 3) dtype=float32>
# you need to assign it.
>>> input = K.cast(input, dtype='float16')
>>> input
<tf.Tensor 'Cast_2:0' shape=(2, 3) dtype=float16>
update
keras.backend.update(x, new_x)
Update the value of x
to new_x
.
Arguments
- x: A
Variable
. - new_x: A tensor of same shape as
x
.
Returns
The variable x
updated.
update_add
keras.backend.update_add(x, increment)
Update the value of x
by adding increment
.
Arguments
- x: A
Variable
. - increment: A tensor of same shape as
x
.
Returns
The variable x
updated.
update_sub
keras.backend.update_sub(x, decrement)
Update the value of x
by subtracting decrement
.
Arguments
- x: A
Variable
. - decrement: A tensor of same shape as
x
.
Returns
The variable x
updated.
moving_average_update
keras.backend.moving_average_update(x, value, momentum)
Compute the moving average of a variable.
Arguments
- x: A
Variable
. - value: A tensor with the same shape as
x
. - momentum: The moving average momentum.
Returns
An operation to update the variable.
dot
keras.backend.dot(x, y)
Multiplies 2 tensors (and/or variables) and returns a tensor.
When attempting to multiply a nD tensorwith a nD tensor, it reproduces the Theano behavior.(e.g. (2, 3) * (4, 3, 5) -> (2, 4, 5)
)
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A tensor, dot product of x
and y
.
Examples
# dot product between tensors
>>> x = K.placeholder(shape=(2, 3))
>>> y = K.placeholder(shape=(3, 4))
>>> xy = K.dot(x, y)
>>> xy
<tf.Tensor 'MatMul_9:0' shape=(2, 4) dtype=float32>
# dot product between tensors
>>> x = K.placeholder(shape=(32, 28, 3))
>>> y = K.placeholder(shape=(3, 4))
>>> xy = K.dot(x, y)
>>> xy
<tf.Tensor 'MatMul_9:0' shape=(32, 28, 4) dtype=float32>
# Theano-like behavior example
>>> x = K.random_uniform_variable(shape=(2, 3), low=0, high=1)
>>> y = K.ones((4, 3, 5))
>>> xy = K.dot(x, y)
>>> K.int_shape(xy)
(2, 4, 5)
Numpy implementation
def dot(x, y):
return np.dot(x, y)
batch_dot
keras.backend.batch_dot(x, y, axes=None)
Batchwise dot product.
batch_dot
is used to compute dot product of x
and y
whenx
and y
are data in batches, i.e. in a shape of(batch_size, :)
.batch_dot
results in a tensor or variable with less dimensionsthan the input. If the number of dimensions is reduced to 1,we use expand_dims
to make sure that ndim is at least 2.
Arguments
- x: Keras tensor or variable with
ndim >= 2
. - y: Keras tensor or variable with
ndim >= 2
. - axes: int or tuple(int, int). Target dimensions to be reduced.
Returns
A tensor with shape equal to the concatenation of x
's shape(less the dimension that was summed over) and y
's shape(less the batch dimension and the dimension that was summed over).If the final rank is 1, we reshape it to (batch_size, 1)
.
Examples
Assume x = [[1, 2], [3, 4]]
and y = [[5, 6], [7, 8]]
batch_dot(x, y, axes=1) = [[17], [53]]
which is the main diagonalof x.dot(y.T)
, although we never have to calculate the off-diagonalelements.
Pseudocode:
inner_products = []
for xi, yi in zip(x, y):
inner_products.append(xi.dot(yi))
result = stack(inner_products)
Shape inference:Let x
's shape be (100, 20)
and y
's shape be (100, 30, 20)
.If axes
is (1, 2), to find the output shape of resultant tensor,loop through each dimension in x
's shape and y
's shape:
x.shape[0]
: 100 : append to output shapex.shape[1]
: 20 : do not append to output shape,dimension 1 ofx
has been summed over. (dot_axes[0]
= 1)y.shape[0]
: 100 : do not append to output shape,always ignore first dimension ofy
y.shape[1]
: 30 : append to output shapey.shape[2]
: 20 : do not append to output shape,dimension 2 ofy
has been summed over. (dot_axes[1]
= 2)output_shape
=(100, 30)
>>> x_batch = K.ones(shape=(32, 20, 1))
>>> y_batch = K.ones(shape=(32, 30, 20))
>>> xy_batch_dot = K.batch_dot(x_batch, y_batch, axes=(1, 2))
>>> K.int_shape(xy_batch_dot)
(32, 1, 30)
Numpy implementation
Show the Numpy implementationwzxhzdk:102
transpose
keras.backend.transpose(x)
Transposes a tensor and returns it.
Arguments
- x: Tensor or variable.
Returns
A tensor.
Examples
>>> var = K.variable([[1, 2, 3], [4, 5, 6]])
>>> K.eval(var)
array([[ 1., 2., 3.],
[ 4., 5., 6.]], dtype=float32)
>>> var_transposed = K.transpose(var)
>>> K.eval(var_transposed)
array([[ 1., 4.],
[ 2., 5.],
[ 3., 6.]], dtype=float32)
>>> inputs = K.placeholder((2, 3))
>>> inputs
<tf.Tensor 'Placeholder_11:0' shape=(2, 3) dtype=float32>
>>> input_transposed = K.transpose(inputs)
>>> input_transposed
<tf.Tensor 'transpose_4:0' shape=(3, 2) dtype=float32>
Numpy implementation
def transpose(x):
return np.transpose(x)
gather
keras.backend.gather(reference, indices)
Retrieves the elements of indices indices
in the tensor reference
.
Arguments
- reference: A tensor.
- indices: An integer tensor of indices.
Returns
A tensor of same type as reference
.
Numpy implementation
def gather(reference, indices):
return reference[indices]
max
keras.backend.max(x, axis=None, keepdims=False)
Maximum value in a tensor.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to find maximum values. If
None
(default), finds the maximum over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
A tensor with maximum values of x
.
Numpy implementation
def max(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.max(x, axis=axis, keepdims=keepdims)
min
keras.backend.min(x, axis=None, keepdims=False)
Minimum value in a tensor.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to find minimum values. If
None
(default), finds the minimum over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
A tensor with miminum values of x
.
Numpy implementation
def min(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.min(x, axis=axis, keepdims=keepdims)
sum
keras.backend.sum(x, axis=None, keepdims=False)
Sum of the values in a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to sum over. If
None
(default), sums over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
A tensor with sum of x
.
Numpy implementation
def sum(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.sum(x, axis=axis, keepdims=keepdims)
prod
keras.backend.prod(x, axis=None, keepdims=False)
Multiplies the values in a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the product. If
None
(default), computes the product over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
A tensor with the product of elements of x
.
Numpy implementation
def prod(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.prod(x, axis=axis, keepdims=keepdims)
cumsum
keras.backend.cumsum(x, axis=0)
Cumulative sum of the values in a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer, the axis to compute the sum.
Returns
A tensor of the cumulative sum of values of x
along axis
.Numpy implementation
def cumsum(x, axis=0):
return np.cumsum(x, axis=axis)
cumprod
keras.backend.cumprod(x, axis=0)
Cumulative product of the values in a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer, the axis to compute the product.
Returns
A tensor of the cumulative product of values of x
along axis
.Numpy implementation
def cumprod(x, axis=0):
return np.cumprod(x, axis=axis)
var
keras.backend.var(x, axis=None, keepdims=False)
Variance of a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the variance. If
None
(default), computes the variance over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
A tensor with the variance of elements of x
.Numpy implementation
def var(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.var(x, axis=axis, keepdims=keepdims)
std
keras.backend.std(x, axis=None, keepdims=False)
Standard deviation of a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the standard deviation. If
None
(default), computes the standard deviation over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
A tensor with the standard deviation of elements of x
.Numpy implementation
def std(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.std(x, axis=axis, keepdims=keepdims)
mean
keras.backend.mean(x, axis=None, keepdims=False)
Mean of a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the mean. If
None
(default), computes the mean over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1 for each entry inaxis
. Ifkeepdims
isTrue
, the reduced dimensions are retained with length 1.
Returns
A tensor with the mean of elements of x
.Numpy implementation
def mean(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.mean(x, axis=axis, keepdims=keepdims)
any
keras.backend.any(x, axis=None, keepdims=False)
Bitwise reduction (logical OR).
Arguments
- x: Tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the logical or. If
None
(default), computes the logical or over all dimensions. - keepdims: whether the drop or broadcast the reduction axes.
Returns
A uint8 tensor (0s and 1s).Numpy implementation
def any(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.any(x, axis=axis, keepdims=keepdims)
all
keras.backend.all(x, axis=None, keepdims=False)
Bitwise reduction (logical AND).
Arguments
- x: Tensor or variable.
- axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the logical and. If
None
(default), computes the logical and over all dimensions. - keepdims: whether the drop or broadcast the reduction axes.
Returns
A uint8 tensor (0s and 1s).Numpy implementation
def all(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return np.all(x, axis=axis, keepdims=keepdims)
argmax
keras.backend.argmax(x, axis=-1)
Returns the index of the maximum value along an axis.
Arguments
- x: Tensor or variable.
- axis: axis along which to perform the reduction.
Returns
A tensor.Numpy implementation
def argmax(x, axis=-1):
return np.argmax(x, axis=axis)
argmin
keras.backend.argmin(x, axis=-1)
Returns the index of the minimum value along an axis.
Arguments
- x: Tensor or variable.
- axis: axis along which to perform the reduction.
Returns
A tensor.Numpy implementation
def argmin(x, axis=-1):
return np.argmin(x, axis=axis)
square
keras.backend.square(x)
Element-wise square.
Arguments
- x: Tensor or variable.
Returns
A tensor.
abs
keras.backend.abs(x)
Element-wise absolute value.
Arguments
- x: Tensor or variable.
Returns
A tensor.
sqrt
keras.backend.sqrt(x)
Element-wise square root.
Arguments
- x: Tensor or variable.
Returns
A tensor.Numpy implementation
def sqrt(x):
y = np.sqrt(x)
y[np.isnan(y)] = 0.
return y
exp
keras.backend.exp(x)
Element-wise exponential.
Arguments
- x: Tensor or variable.
Returns
A tensor.
log
keras.backend.log(x)
Element-wise log.
Arguments
- x: Tensor or variable.
Returns
A tensor.
logsumexp
keras.backend.logsumexp(x, axis=None, keepdims=False)
Computes log(sum(exp(elements across dimensions of a tensor))).
This function is more numerically stable than log(sum(exp(x))).It avoids overflows caused by taking the exp of large inputs andunderflows caused by taking the log of small inputs.
Arguments
- x: A tensor or variable.
- axis: axis: An integer or list of integers in [-rank(x), rank(x)), the axes to compute the logsumexp. If
None
(default), computes the logsumexp over all dimensions. - keepdims: A boolean, whether to keep the dimensions or not. If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
The reduced tensor.Numpy implementation
def logsumexp(x, axis=None, keepdims=False):
if isinstance(axis, list):
axis = tuple(axis)
return sp.special.logsumexp(x, axis=axis, keepdims=keepdims)
round
keras.backend.round(x)
Element-wise rounding to the closest integer.
In case of tie, the rounding mode used is "half to even".
Arguments
- x: Tensor or variable.
Returns
A tensor.
sign
keras.backend.sign(x)
Element-wise sign.
Arguments
- x: Tensor or variable.
Returns
A tensor.
pow
keras.backend.pow(x, a)
Element-wise exponentiation.
Arguments
- x: Tensor or variable.
- a: Python integer.
Returns
A tensor.Numpy implementation
def pow(x, a=1.):
return np.power(x, a)
clip
keras.backend.clip(x, min_value, max_value)
Element-wise value clipping.
Arguments
- x: Tensor or variable.
- min_value: Python float, integer or tensor.
- max_value: Python float, integer or tensor.
Returns
A tensor.Numpy implementation
def clip(x, min_value, max_value):
return np.clip(x, min_value, max_value)
equal
keras.backend.equal(x, y)
Element-wise equality between two tensors.
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A bool tensor.
Numpy implementation
def equal(x, y):
return x == y
not_equal
keras.backend.not_equal(x, y)
Element-wise inequality between two tensors.
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A bool tensor.
Numpy implementation
def not_equal(x, y):
return x != y
greater
keras.backend.greater(x, y)
Element-wise truth value of (x > y).
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A bool tensor.
Numpy implementation
def greater(x, y):
return x > y
greater_equal
keras.backend.greater_equal(x, y)
Element-wise truth value of (x >= y).
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A bool tensor.
Numpy implementation
def greater_equal(x, y):
return x >= y
less
keras.backend.less(x, y)
Element-wise truth value of (x < y).
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A bool tensor.
Numpy implementation
def less(x, y):
return x < y
less_equal
keras.backend.less_equal(x, y)
Element-wise truth value of (x <= y).
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A bool tensor.
Numpy implementation
def less_equal(x, y):
return x <= y
maximum
keras.backend.maximum(x, y)
Element-wise maximum of two tensors.
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A tensor.
Numpy implementation
def maximum(x, y):
return np.maximum(x, y)
minimum
keras.backend.minimum(x, y)
Element-wise minimum of two tensors.
Arguments
- x: Tensor or variable.
- y: Tensor or variable.
Returns
A tensor.
Numpy implementation
def minimum(x, y):
return np.minimum(x, y)
sin
keras.backend.sin(x)
Computes sin of x element-wise.
Arguments
- x: Tensor or variable.
Returns
A tensor.
cos
keras.backend.cos(x)
Computes cos of x element-wise.
Arguments
- x: Tensor or variable.
Returns
A tensor.
normalize_batch_in_training
keras.backend.normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=0.001)
Computes mean and std for batch then apply batch_normalization on batch.
Arguments
- x: Input tensor or variable.
- gamma: Tensor by which to scale the input.
- beta: Tensor with which to center the input.
- reduction_axes: iterable of integers, axes over which to normalize.
- epsilon: Fuzz factor.
Returns
A tuple length of 3, (normalized_tensor, mean, variance)
.
batch_normalization
keras.backend.batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=0.001)
Applies batch normalization on x given mean, var, beta and gamma.
I.e. returns:output = (x - mean) / sqrt(var + epsilon) * gamma + beta
Arguments
- x: Input tensor or variable.
- mean: Mean of batch.
- var: Variance of batch.
- beta: Tensor with which to center the input.
- gamma: Tensor by which to scale the input.
- axis: Integer, the axis that should be normalized. (typically the features axis).
- epsilon: Fuzz factor.
Returns
A tensor.
Numpy implementation
def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=0.001):
return ((x - mean) / sqrt(var + epsilon)) * gamma + beta
concatenate
keras.backend.concatenate(tensors, axis=-1)
Concatenates a list of tensors alongside the specified axis.
Arguments
- tensors: list of tensors to concatenate.
- axis: concatenation axis.
Returns
A tensor.
reshape
keras.backend.reshape(x, shape)
Reshapes a tensor to the specified shape.
Arguments
- x: Tensor or variable.
- shape: Target shape tuple.
Returns
A tensor.
permute_dimensions
keras.backend.permute_dimensions(x, pattern)
Permutes axes in a tensor.
Arguments
- x: Tensor or variable.
- pattern: A tuple of dimension indices, e.g.
(0, 2, 1)
.
Returns
A tensor.
resize_images
keras.backend.resize_images(x, height_factor, width_factor, data_format, interpolation='nearest')
Resizes the images contained in a 4D tensor.
Arguments
- x: Tensor or variable to resize.
- height_factor: Positive integer.
- width_factor: Positive integer.
- data_format: string,
"channels_last"
or"channels_first"
. - interpolation: A string, one of
nearest
orbilinear
.
Returns
A tensor.
Raises
- ValueError: if
data_format
is
neither "channels_last"
or "channels_first"
.
resize_volumes
keras.backend.resize_volumes(x, depth_factor, height_factor, width_factor, data_format)
Resizes the volume contained in a 5D tensor.
Arguments
- x: Tensor or variable to resize.
- depth_factor: Positive integer.
- height_factor: Positive integer.
- width_factor: Positive integer.
- data_format: string,
"channels_last"
or"channels_first"
.
Returns
A tensor.
Raises
- ValueError: if
data_format
is
neither "channels_last"
or "channels_first"
.
repeat_elements
keras.backend.repeat_elements(x, rep, axis)
Repeats the elements of a tensor along an axis, like np.repeat
.
If x
has shape (s1, s2, s3)
and axis
is 1
, the outputwill have shape (s1, s2 * rep, s3)
.
Arguments
- x: Tensor or variable.
- rep: Python integer, number of times to repeat.
- axis: Axis along which to repeat.
Returns
A tensor.
repeat
keras.backend.repeat(x, n)
Repeats a 2D tensor.
if x
has shape (samples, dim) and n
is 2
,the output will have shape (samples, 2, dim)
.
Arguments
- x: Tensor or variable.
- n: Python integer, number of times to repeat.
Returns
A tensor.
arange
keras.backend.arange(start, stop=None, step=1, dtype='int32')
Creates a 1D tensor containing a sequence of integers.
The function arguments use the same convention asTheano's arange: if only one argument is provided,it is in fact the "stop" argument and "start" is 0.
The default type of the returned tensor is 'int32'
tomatch TensorFlow's default.
Arguments
- start: Start value.
- stop: Stop value.
- step: Difference between two successive values.
- dtype: Integer dtype to use.
Returns
An integer tensor.
tile
keras.backend.tile(x, n)
Creates a tensor by tiling x
by n
.
Arguments
- x: A tensor or variable
- n: A list of integer. The length must be the same as the number of dimensions in
x
.
Returns
A tiled tensor.
Example
>>> from keras import backend as K
>>> kvar = K.variable(np.random.random((2, 3)))
>>> kvar_tile = K.tile(K.eye(2), (2, 3))
>>> K.eval(kvar_tile)
array([[1., 0., 1., 0., 1., 0.],
[0., 1., 0., 1., 0., 1.],
[1., 0., 1., 0., 1., 0.],
[0., 1., 0., 1., 0., 1.]], dtype=float32)
Numpy implementation
def tile(x, n):
return np.tile(x, n)
flatten
keras.backend.flatten(x)
Flatten a tensor.
Arguments
- x: A tensor or variable.
Returns
A tensor, reshaped into 1-D
batch_flatten
keras.backend.batch_flatten(x)
Turn a nD tensor into a 2D tensor with same 0th dimension.
In other words, it flattens each data samples of a batch.
Arguments
- x: A tensor or variable.
Returns
A tensor.
expand_dims
keras.backend.expand_dims(x, axis=-1)
Adds a 1-sized dimension at index "axis".
Arguments
- x: A tensor or variable.
- axis: Position where to add a new axis.
Returns
A tensor with expanded dimensions.
squeeze
keras.backend.squeeze(x, axis)
Removes a 1-dimension from the tensor at index "axis".
Arguments
- x: A tensor or variable.
- axis: Axis to drop.
Returns
A tensor with the same data as x
but reduced dimensions.
temporal_padding
keras.backend.temporal_padding(x, padding=(1, 1))
Pads the middle dimension of a 3D tensor.
Arguments
- x: Tensor or variable.
- padding: Tuple of 2 integers, how many zeros to add at the start and end of dim 1.
Returns
A padded 3D tensor.
spatial_2d_padding
keras.backend.spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None)
Pads the 2nd and 3rd dimensions of a 4D tensor.
Arguments
- x: Tensor or variable.
- padding: Tuple of 2 tuples, padding pattern.
- data_format: string,
"channels_last"
or"channels_first"
.
Returns
A padded 4D tensor.
Raises
- ValueError: if
data_format
is
neither "channels_last"
or "channels_first"
.
spatial_3d_padding
keras.backend.spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None)
Pads 5D tensor with zeros along the depth, height, width dimensions.
Pads these dimensions with respectively"padding[0]", "padding[1]" and "padding[2]" zeros left and right.
For 'channels_last' data_format,the 2nd, 3rd and 4th dimension will be padded.For 'channels_first' data_format,the 3rd, 4th and 5th dimension will be padded.
Arguments
- x: Tensor or variable.
- padding: Tuple of 3 tuples, padding pattern.
- data_format: string,
"channels_last"
or"channels_first"
.
Returns
A padded 5D tensor.
Raises
- ValueError: if
data_format
is
neither "channels_last"
or "channels_first"
.
stack
keras.backend.stack(x, axis=0)
Stacks a list of rank R
tensors into a rank R+1
tensor.
Arguments
- x: List of tensors.
- axis: Axis along which to perform stacking.
Returns
A tensor.
Numpy implementation
def stack(x, axis=0):
return np.stack(x, axis=axis)
one_hot
keras.backend.one_hot(indices, num_classes)
Computes the one-hot representation of an integer tensor.
Arguments
- indices: nD integer tensor of shape
(batch_size, dim1, dim2, … dim(n-1))
- num_classes: Integer, number of classes to consider.
Returns
(n + 1)D one hot representation of the inputwith shape (batch_size, dim1, dim2, … dim(n-1), num_classes)
reverse
keras.backend.reverse(x, axes)
Reverses a tensor along the specified axes.
Arguments
- x: Tensor to reverse.
- axes: Integer or iterable of integers. Axes to reverse.
Returns
A tensor.
Numpy implementation
def reverse(x, axes):
if isinstance(axes, list):
axes = tuple(axes)
return np.flip(x, axes)
slice
keras.backend.slice(x, start, size)
Extracts a slice from a tensor.
Arguments
- x: Input tensor.
- start: Integer list/tuple or tensor indicating the start indices of the slice along each axis.
- size: Integer list/tuple or tensor indicating how many dimensions to slice along each axis.
Returns
A sliced tensor:
new_x = x[start[0]: start[0] + size[0], ..., start[-1]: start[-1] + size[-1]]
Raises
- ValueError: if the dimension and the size of indices mismatches.
Numpy implementation
def slice(x, start, size):
slices = [py_slice(i, i + j) for i, j in zip(start, size)]
return x[tuple(slices)]
get_value
keras.backend.get_value(x)
Returns the value of a variable.
Arguments
- x: input variable.
Returns
A Numpy array.
batch_get_value
keras.backend.batch_get_value(ops)
Returns the value of more than one tensor variable.
Arguments
- ops: list of ops to run.
Returns
A list of Numpy arrays.
set_value
keras.backend.set_value(x, value)
Sets the value of a variable, from a Numpy array.
Arguments
- x: Variable to set to a new value.
- value: Value to set the tensor to, as a Numpy array (of the same shape).
batch_set_value
keras.backend.batch_set_value(tuples)
Sets the values of many tensor variables at once.
Arguments
- tuples: a list of tuples
(tensor, value)
.value
should be a Numpy array.
print_tensor
keras.backend.print_tensor(x, message='')
Prints message
and the tensor value when evaluated.
Note that print_tensor
returns a new tensor identical to x
which should be used in the following code. Otherwise theprint operation is not taken into account during evaluation.
Example
>>> x = K.print_tensor(x, message="x is: ")
Arguments
- x: Tensor to print.
- message: Message to print jointly with the tensor.
Returns
The same tensor x
, unchanged.
function
keras.backend.function(inputs, outputs, updates=None)
gradients
keras.backend.gradients(loss, variables)
Returns the gradients of loss
w.r.t. variables
.
Arguments
- loss: Scalar tensor to minimize.
- variables: List of variables.
Returns
A gradients tensor.
stop_gradient
keras.backend.stop_gradient(variables)
Returns variables
but with zero gradient w.r.t. every other variable.
Arguments
- variables: tensor or list of tensors to consider constant with respect to any other variable.
Returns
A single tensor or a list of tensors (depending on the passed argument) that has constant gradient with respect to any other variable.
rnn
keras.backend.rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None)
Iterates over the time dimension of a tensor.
Arguments
- step_function: Parameters: inputs: Tensor with shape (samples, …) (no time dimension), representing input for the batch of samples at a certain time step. states: List of tensors. Returns: outputs: Tensor with shape (samples, …) (no time dimension), new_states: List of tensors, same length and shapes as 'states'.
- inputs: Tensor of temporal data of shape (samples, time, …) (at least 3D).
- initial_states: Tensor with shape (samples, …) (no time dimension), containing the initial values for the states used in the step function.
- go_backwards: Boolean. If True, do the iteration over the time dimension in reverse order and return the reversed sequence.
- mask: Binary tensor with shape (samples, time), with a zero for every element that is masked.
- constants: A list of constant values passed at each step.
- unroll: Whether to unroll the RNN or to use a symbolic loop (
while_loop
orscan
depending on backend). - input_length: Static number of timesteps in the input.
Returns
A tuple, (last_output, outputs, new_states)
.
last_output: The latest output of the rnn, of shape (samples, …)
outputs: Tensor with shape (samples, time, …)
where eachentry outputs[s, t]
is the output of the step functionat time t
for sample s
.new_states: List of tensors, latest states returned bythe step function, of shape (samples, …)
.
Raises
- ValueError: If input dimension is less than 3.
- ValueError: If
unroll
isTrue
but input timestep is not a fixed number. - ValueError: If
mask
is provided (notNone
) but states is not provided (len(states)
== 0).
Numpy implementation
Show the Numpy implementationwzxhzdk:206
switch
keras.backend.switch(condition, then_expression, else_expression)
Switches between two operations depending on a scalar value.
Note that both thenexpression
and else_expression
should be symbolic tensors of the _same shape.
Arguments
- condition: tensor (
int
orbool
). - then_expression: either a tensor, or a callable that returns a tensor.
- else_expression: either a tensor, or a callable that returns a tensor.
Returns
The selected tensor.
Raises
- ValueError: If rank of
condition
is greater than rank of expressions.
Numpy implementation
def switch(condition, then_expression, else_expression):
cond_float = condition.astype(floatx())
while cond_float.ndim < then_expression.ndim:
cond_float = cond_float[..., np.newaxis]
return cond_float * then_expression + (1 - cond_float) * else_expression
in_train_phase
keras.backend.in_train_phase(x, alt, training=None)
Selects x
in train phase, and alt
otherwise.
Note that alt
should have the same shape as x
.
Arguments
- x: What to return in train phase (tensor or callable that returns a tensor).
- alt: What to return otherwise (tensor or callable that returns a tensor).
- training: Optional scalar tensor (or Python boolean, or Python integer) specifying the learning phase.
Returns
Either x
or alt
based on the training
flag.the training
flag defaults to K.learning_phase()
.
in_test_phase
keras.backend.in_test_phase(x, alt, training=None)
Selects x
in test phase, and alt
otherwise.
Note that alt
should have the same shape as x
.
Arguments
- x: What to return in test phase (tensor or callable that returns a tensor).
- alt: What to return otherwise (tensor or callable that returns a tensor).
- training: Optional scalar tensor (or Python boolean, or Python integer) specifying the learning phase.
Returns
Either x
or alt
based on K.learning_phase
.
relu
keras.backend.relu(x, alpha=0.0, max_value=None, threshold=0.0)
Rectified linear unit.
With default values, it returns element-wise max(x, 0)
.
Otherwise, it follows:f(x) = max_value
for x >= max_value
,f(x) = x
for threshold <= x < max_value
,f(x) = alpha * (x - threshold)
otherwise.
Arguments
- x: A tensor or variable.
- alpha: A scalar, slope of negative section (default=
0.
). - max_value: float. Saturation threshold.
- threshold: float. Threshold value for thresholded activation.
Returns
A tensor.
Numpy implementation
def relu(x, alpha=0., max_value=None, threshold=0.):
if max_value is None:
max_value = np.inf
above_threshold = x * (x >= threshold)
above_threshold = np.clip(above_threshold, 0.0, max_value)
below_threshold = alpha * (x - threshold) * (x < threshold)
return below_threshold + above_threshold
elu
keras.backend.elu(x, alpha=1.0)
Exponential linear unit.
Arguments
- x: A tensor or variable to compute the activation function for.
- alpha: A scalar, slope of negative section.
Returns
A tensor.
Numpy implementation
def elu(x, alpha=1.):
return x * (x > 0) + alpha * (np.exp(x) - 1.) * (x < 0)
softmax
keras.backend.softmax(x, axis=-1)
Softmax of a tensor.
Arguments
- x: A tensor or variable.
- axis: The dimension softmax would be performed on. The default is -1 which indicates the last dimension.
Returns
A tensor.
Numpy implementation
def softmax(x, axis=-1):
y = np.exp(x - np.max(x, axis, keepdims=True))
return y / np.sum(y, axis, keepdims=True)
softplus
keras.backend.softplus(x)
Softplus of a tensor.
Arguments
- x: A tensor or variable.
Returns
A tensor.
Numpy implementation
def softplus(x):
return np.log(1. + np.exp(x))
softsign
keras.backend.softsign(x)
Softsign of a tensor.
Arguments
- x: A tensor or variable.
Returns
A tensor.
Numpy implementation
def softsign(x):
return x / (1 + np.abs(x))
categorical_crossentropy
keras.backend.categorical_crossentropy(target, output, from_logits=False, axis=-1)
Categorical crossentropy between an output tensor and a target tensor.
Arguments
- target: A tensor of the same shape as
output
. - output: A tensor resulting from a softmax (unless
from_logits
is True, in which caseoutput
is expected to be the logits). - from_logits: Boolean, whether
output
is the result of a softmax, or is a tensor of logits. - axis: Int specifying the channels axis.
axis=-1
corresponds to data formatchannels_last
, andaxis=1
corresponds to data formatchannels_first
.
Returns
Output tensor.
Raises
- ValueError: if
axis
is neither -1 nor one of the axes ofoutput
.
sparse_categorical_crossentropy
keras.backend.sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1)
Categorical crossentropy with integer targets.
Arguments
- target: An integer tensor.
- output: A tensor resulting from a softmax (unless
from_logits
is True, in which caseoutput
is expected to be the logits). - from_logits: Boolean, whether
output
is the result of a softmax, or is a tensor of logits. - axis: Int specifying the channels axis.
axis=-1
corresponds to data formatchannels_last
, andaxis=1
corresponds to data formatchannels_first
.
Returns
Output tensor.
Raises
- ValueError: if
axis
is neither -1 nor one of the axes ofoutput
.
binary_crossentropy
keras.backend.binary_crossentropy(target, output, from_logits=False)
Binary crossentropy between an output tensor and a target tensor.
Arguments
- target: A tensor with the same shape as
output
. - output: A tensor.
- from_logits: Whether
output
is expected to be a logits tensor. By default, we consider thatoutput
encodes a probability distribution.
Returns
A tensor.
sigmoid
keras.backend.sigmoid(x)
Element-wise sigmoid.
Arguments
- x: A tensor or variable.
Returns
A tensor.
Numpy implementation
def sigmoid(x):
return 1. / (1. + np.exp(-x))
hard_sigmoid
keras.backend.hard_sigmoid(x)
Segment-wise linear approximation of sigmoid.
Faster than sigmoid.Returns 0.
if x < -2.5
, 1.
if x > 2.5
.In -2.5 <= x <= 2.5
, returns 0.2 * x + 0.5
.
Arguments
- x: A tensor or variable.
Returns
A tensor.
Numpy implementation
def hard_sigmoid(x):
y = 0.2 * x + 0.5
return np.clip(y, 0, 1)
tanh
keras.backend.tanh(x)
Element-wise tanh.
Arguments
- x: A tensor or variable.
Returns
A tensor.
Numpy implementation
def tanh(x):
return np.tanh(x)
dropout
keras.backend.dropout(x, level, noise_shape=None, seed=None)
Sets entries in x
to zero at random, while scaling the entire tensor.
Arguments
- x: tensor
- level: fraction of the entries in the tensor that will be set to 0.
- noise_shape: shape for randomly generated keep/drop flags, must be broadcastable to the shape of
x
- seed: random seed to ensure determinism.
Returns
A tensor.Numpy implementation
Show the Numpy implementationwzxhzdk:231
l2_normalize
keras.backend.l2_normalize(x, axis=None)
Normalizes a tensor wrt the L2 norm alongside the specified axis.
Arguments
- x: Tensor or variable.
- axis: axis along which to perform normalization.
Returns
A tensor.
Numpy implementation
def l2_normalize(x, axis=-1):
y = np.max(np.sum(x ** 2, axis, keepdims=True), axis, keepdims=True)
return x / np.sqrt(y)
in_top_k
keras.backend.in_top_k(predictions, targets, k)
Returns whether the targets
are in the top k
predictions
.
Arguments
- predictions: A tensor of shape
(batch_size, classes)
and typefloat32
. - targets: A 1D tensor of length
batch_size
and typeint32
orint64
. - k: An
int
, number of top elements to consider.
Returns
A 1D tensor of length batch_size
and type bool
.output[i]
is True
if predictions[i, targets[i]]
is within top-k
values of predictions[i]
.
conv1d
keras.backend.conv1d(x, kernel, strides=1, padding='valid', data_format=None, dilation_rate=1)
1D convolution.
Arguments
- x: Tensor or variable.
- kernel: kernel tensor.
- strides: stride integer.
- padding: string,
"same"
,"causal"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. - dilation_rate: integer dilate rate.
Returns
A tensor, result of 1D convolution.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
conv2d
keras.backend.conv2d(x, kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
2D convolution.
Arguments
- x: Tensor or variable.
- kernel: kernel tensor.
- strides: strides tuple.
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs. - dilation_rate: tuple of 2 integers.
Returns
A tensor, result of 2D convolution.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
conv2d_transpose
keras.backend.conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
2D deconvolution (i.e. transposed convolution).
Arguments
- x: Tensor or variable.
- kernel: kernel tensor.
- output_shape: 1D int tensor for the output shape.
- strides: strides tuple.
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs. - dilation_rate: tuple of 2 integers.
Returns
A tensor, result of transposed 2D convolution.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
separable_conv1d
keras.backend.separable_conv1d(x, depthwise_kernel, pointwise_kernel, strides=1, padding='valid', data_format=None, dilation_rate=1)
1D convolution with separable filters.
Arguments
- x: input tensor
- depthwise_kernel: convolution kernel for the depthwise convolution.
- pointwise_kernel: kernel for the 1x1 convolution.
- strides: stride integer.
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. - dilation_rate: integer dilation rate.
Returns
Output tensor.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
separable_conv2d
keras.backend.separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
2D convolution with separable filters.
Arguments
- x: input tensor
- depthwise_kernel: convolution kernel for the depthwise convolution.
- pointwise_kernel: kernel for the 1x1 convolution.
- strides: strides tuple (length 2).
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. - dilation_rate: tuple of integers, dilation rates for the separable convolution.
Returns
Output tensor.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
depthwise_conv2d
keras.backend.depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
2D convolution with separable filters.
Arguments
- x: input tensor
- depthwise_kernel: convolution kernel for the depthwise convolution.
- strides: strides tuple (length 2).
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. - dilation_rate: tuple of integers, dilation rates for the separable convolution.
Returns
Output tensor.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
conv3d
keras.backend.conv3d(x, kernel, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1))
3D convolution.
Arguments
- x: Tensor or variable.
- kernel: kernel tensor.
- strides: strides tuple.
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs. - dilation_rate: tuple of 3 integers.
Returns
A tensor, result of 3D convolution.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
conv3d_transpose
keras.backend.conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1), padding='valid', data_format=None)
3D deconvolution (i.e. transposed convolution).
Arguments
- x: input tensor.
- kernel: kernel tensor.
- output_shape: 1D int tensor for the output shape.
- strides: strides tuple.
- padding: string, "same" or "valid".
- data_format: string,
"channels_last"
or"channels_first"
. Whether to use Theano or TensorFlow/CNTK data format for inputs/kernels/outputs.
Returns
A tensor, result of transposed 3D convolution.
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
pool2d
keras.backend.pool2d(x, pool_size, strides=(1, 1), padding='valid', data_format=None, pool_mode='max')
2D Pooling.
Arguments
- x: Tensor or variable.
- pool_size: tuple of 2 integers.
- strides: tuple of 2 integers.
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. - pool_mode: string,
"max"
or"avg"
.
Returns
A tensor, result of 2D pooling.
Raises
- ValueError: if
data_format
is
neither "channels_last"
or "channels_first"
.
- ValueError: if
pool_mode
is neither"max"
or"avg"
.
pool3d
keras.backend.pool3d(x, pool_size, strides=(1, 1, 1), padding='valid', data_format=None, pool_mode='max')
3D Pooling.
Arguments
- x: Tensor or variable.
- pool_size: tuple of 3 integers.
- strides: tuple of 3 integers.
- padding: string,
"same"
or"valid"
. - data_format: string,
"channels_last"
or"channels_first"
. - pool_mode: string,
"max"
or"avg"
.
Returns
A tensor, result of 3D pooling.
Raises
- ValueError: if
data_format
is
neither "channels_last"
or "channels_first"
.
- ValueError: if
pool_mode
is neither"max"
or"avg"
.
local_conv1d
keras.backend.local_conv1d(inputs, kernel, kernel_size, strides, data_format=None)
Apply 1D conv with un-shared weights.
Arguments
- inputs: 3D tensor with shape: (batch_size, steps, input_dim)
- kernel: the unshared weight for convolution, with shape (output_length, feature_dim, filters)
- kernel_size: a tuple of a single integer, specifying the length of the 1D convolution window
- strides: a tuple of a single integer, specifying the stride length of the convolution
- data_format: the data format, channels_first or channels_last
Returns
the tensor after 1d conv with un-shared weights,with shape (batch_size, output_length, filters)
Raises
- ValueError: If
data_format
is neither"channels_last"
nor"channels_first"
.
local_conv2d
keras.backend.local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None)
Apply 2D conv with un-shared weights.
Arguments
- inputs: 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'.
- kernel: the unshared weight for convolution, with shape (output_items, feature_dim, filters)
- kernel_size: a tuple of 2 integers, specifying the width and height of the 2D convolution window.
- strides: a tuple of 2 integers, specifying the strides of the convolution along the width and height.
- output_shape: a tuple with (output_row, output_col)
- data_format: the data format, channels_first or channels_last
Returns
A 4d tensor with shape:(batch_size, filters, new_rows, new_cols)if data_format='channels_first'or 4D tensor with shape:(batch_size, new_rows, new_cols, filters)if data_format='channels_last'.
Raises
- ValueError: if
data_format
is neitherchannels_last
orchannels_first
.
bias_add
keras.backend.bias_add(x, bias, data_format=None)
Adds a bias vector to a tensor.
Arguments
- x: Tensor or variable.
- bias: Bias tensor to add.
- data_format: string,
"channels_last"
or"channels_first"
.
Returns
Output tensor.
Raises
ValueError: In one of the two cases below:1. invalid data_format
argument.2. invalid bias shape.the bias should be either a vector ora tensor with ndim(x) - 1 dimensionNumpy implementation
Show the Numpy implementationwzxhzdk:248
random_normal
keras.backend.random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None)
Returns a tensor with normal distribution of values.
Arguments
- shape: A tuple of integers, the shape of tensor to create.
- mean: A float, mean of the normal distribution to draw samples.
- stddev: A float, standard deviation of the normal distribution to draw samples.
- dtype: String, dtype of returned tensor.
- seed: Integer, random seed.
Returns
A tensor.
random_uniform
keras.backend.random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None)
Returns a tensor with uniform distribution of values.
Arguments
- shape: A tuple of integers, the shape of tensor to create.
- minval: A float, lower boundary of the uniform distribution to draw samples.
- maxval: A float, upper boundary of the uniform distribution to draw samples.
- dtype: String, dtype of returned tensor.
- seed: Integer, random seed.
Returns
A tensor.
random_binomial
keras.backend.random_binomial(shape, p=0.0, dtype=None, seed=None)
Returns a tensor with random binomial distribution of values.
Arguments
- shape: A tuple of integers, the shape of tensor to create.
- p: A float,
0. <= p <= 1
, probability of binomial distribution. - dtype: String, dtype of returned tensor.
- seed: Integer, random seed.
Returns
A tensor.
truncated_normal
keras.backend.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None)
Returns a tensor with truncated random normal distribution of values.
The generated values follow a normal distributionwith specified mean and standard deviation,except that values whose magnitude is more thantwo standard deviations from the mean are dropped and re-picked.
Arguments
- shape: A tuple of integers, the shape of tensor to create.
- mean: Mean of the values.
- stddev: Standard deviation of the values.
- dtype: String, dtype of returned tensor.
- seed: Integer, random seed.
Returns
A tensor.
ctc_label_dense_to_sparse
keras.backend.ctc_label_dense_to_sparse(labels, label_lengths)
Converts CTC labels from dense to sparse.
Arguments
- labels: dense CTC labels.
- label_lengths: length of the labels.
Returns
A sparse tensor representation of the labels.
ctc_batch_cost
keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
Runs CTC loss algorithm on each batch element.
Arguments
- y_true: tensor
(samples, max_string_length)
containing the truth labels. - y_pred: tensor
(samples, time_steps, num_categories)
containing the prediction, or output of the softmax. - input_length: tensor
(samples, 1)
containing the sequence length for each batch item iny_pred
. - label_length: tensor
(samples, 1)
containing the sequence length for each batch item iny_true
.
Returns
Tensor with shape (samples,1) containing the CTC loss of each element.
ctc_decode
keras.backend.ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1, merge_repeated=False)
Decodes the output of a softmax.
Can use either greedy search (also known as best path)or a constrained dictionary search.
Arguments
- y_pred: tensor
(samples, time_steps, num_categories)
containing the prediction, or output of the softmax. - input_length: tensor
(samples, )
containing the sequence length for each batch item iny_pred
. - greedy: perform much faster best-path search if
True
. This does not use a dictionary. - beam_width: if
greedy
isFalse
: a beam search decoder will be used with a beam of this width. - top_paths: if
greedy
isFalse
, how many of the most probable paths will be returned. - merge_repeated: if
greedy
isFalse
, merge repeated classes in the output beams.
Returns
- Tuple: List: if
greedy
isTrue
, returns a list of one element that contains the decoded sequence. IfFalse
, returns thetop_paths
most probable decoded sequences. Important: blank labels are returned as-1
. Tensor(top_paths, )
that contains the log probability of each decoded sequence.
control_dependencies
keras.backend.control_dependencies(control_inputs)
A context manager that specifies control dependencies.
Arguments
- control_inputs: A list of Operation or Tensor objects which must be executed or computed before running the operations defined in the context. Can also be None to clear the control dependencies.
Returns
A context manager.
map_fn
keras.backend.map_fn(fn, elems, name=None, dtype=None)
Map the function fn over the elements elems and return the outputs.
Arguments
- fn: Callable that will be called upon each element in elems
- elems: tensor
- name: A string name for the map node in the graph
- dtype: Output data type.
Returns
Tensor with dtype dtype
.
foldl
keras.backend.foldl(fn, elems, initializer=None, name=None)
Reduce elems using fn to combine them from left to right.
Arguments
- fn: Callable that will be called upon each element in elems and an accumulator, for instance
lambda acc, x: acc + x
- elems: tensor
- initializer: The first value used (
elems[0]
in case of None) - name: A string name for the foldl node in the graph
Returns
Tensor with same type and shape as initializer
.
foldr
keras.backend.foldr(fn, elems, initializer=None, name=None)
Reduce elems using fn to combine them from right to left.
Arguments
- fn: Callable that will be called upon each element in elems and an accumulator, for instance
lambda acc, x: acc + x
- elems: tensor
- initializer: The first value used (
elems[-1]
in case of None) - name: A string name for the foldr node in the graph
Returns
Tensor with same type and shape as initializer
.