Usage of activations
Activations can either be used through an Activation
layer, or through the activation
argument supported by all forward layers:
from keras.layers import Activation, Dense
model.add(Dense(64))
model.add(Activation('tanh'))
This is equivalent to:
model.add(Dense(64, activation='tanh'))
You can also pass an element-wise TensorFlow/Theano/CNTK function as an activation:
from keras import backend as K
model.add(Dense(64, activation=K.tanh))
Available activations
elu
keras.activations.elu(x, alpha=1.0)
Exponential linear unit.
Arguments
- x: Input tensor.
- alpha: A scalar, slope of negative section.
Returns
The exponential linear activation: x
if x > 0
andalpha * (exp(x)-1)
if x < 0
.
References
softmax
keras.activations.softmax(x, axis=-1)
Softmax activation function.
Arguments
- x: Input tensor.
- axis: Integer, axis along which the softmax normalization is applied.
Returns
Tensor, output of softmax transformation.
Raises
- ValueError: In case
dim(x) == 1
.
selu
keras.activations.selu(x)
Scaled Exponential Linear Unit (SELU).
SELU is equal to: scale * elu(x, alpha)
, where alpha and scaleare predefined constants. The values of alpha
and scale
arechosen so that the mean and variance of the inputs are preservedbetween two consecutive layers as long as the weights are initializedcorrectly (see lecun_normal
initialization) and the number of inputsis "large enough" (see references for more information).
Arguments
- x: A tensor or variable to compute the activation function for.
Returns
The scaled exponential unit activation: scale * elu(x, alpha)
.
Note
- To be used together with the initialization "lecun_normal".
- To be used together with the dropout variant "AlphaDropout".
References
softplus
keras.activations.softplus(x)
Softplus activation function.
Arguments
- x: Input tensor.
Returns
The softplus activation: log(exp(x) + 1)
.
softsign
keras.activations.softsign(x)
Softsign activation function.
Arguments
- x: Input tensor.
Returns
The softsign activation: x / (abs(x) + 1)
.
relu
keras.activations.relu(x, alpha=0.0, max_value=None, threshold=0.0)
Rectified Linear Unit.
With default values, it returns element-wise max(x, 0)
.
Otherwise, it follows:f(x) = max_value
for x >= max_value
,f(x) = x
for threshold <= x < max_value
,f(x) = alpha * (x - threshold)
otherwise.
Arguments
- x: Input tensor.
- alpha: float. Slope of the negative part. Defaults to zero.
- max_value: float. Saturation threshold.
- threshold: float. Threshold value for thresholded activation.
Returns
A tensor.
tanh
keras.activations.tanh(x)
Hyperbolic tangent activation function.
Arguments
- x: Input tensor.
Returns
The hyperbolic activation:tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
sigmoid
keras.activations.sigmoid(x)
Sigmoid activation function.
Arguments
- x: Input tensor.
Returns
The sigmoid activation: 1 / (1 + exp(-x))
.
hard_sigmoid
keras.activations.hard_sigmoid(x)
Hard sigmoid activation function.
Faster to compute than sigmoid activation.
Arguments
- x: Input tensor.
Returns
Hard sigmoid activation:
0
ifx < -2.5
1
ifx > 2.5
0.2 * x + 0.5
if-2.5 <= x <= 2.5
.
exponential
keras.activations.exponential(x)
Exponential (base e) activation function.
Arguments
- x: Input tensor.
Returns
Exponential activation: exp(x)
.
linear
keras.activations.linear(x)
Linear (i.e. identity) activation function.
Arguments
- x: Input tensor.
Returns
Input tensor, unchanged.
On "Advanced Activations"
Activations that are more complex than a simple TensorFlow/Theano/CNTK function (eg. learnable activations, which maintain a state) are available as Advanced Activation layers, and can be found in the module keras.layers.advanced_activations
. These include PReLU
and LeakyReLU
.