Pod 开销

FEATURE STATE: Kubernetes v1.18 beta

该功能目前处于 beta 状态,意味着:

  • 版本名称包含 beta (例如 v2beta3)。
  • 代码经过了充分测试,启用该功能被认为是安全的。默认情况下被启用。
  • 对整体功能的支持在未来不会被移除,尽管细节上可能会做更改。
  • 在后续的 beta 或稳定版本中,对象的模式、语义可能以不兼容的方式发生变化。当这种情况发生时,我们将提供迁移到下一个版本的说明。这可能需要删除、编辑和重建 API 对象,编辑过程可能需要一些思考。这可能导致依赖该功能的应用程序停机一段时间。
  • 建议仅在非业务关键场景使用该功能,因为在后续版本中可能会发生不兼容的更改。如果您有多个可以独立升级的集群,那么您可能可以放松这个限制。
  • 请尝试使用我们的 beta 版功能,并给出反馈!在它们退出 beta 测试阶段之后,我们将很难去做更多的更改。

在节点上运行 Pod 时,Pod 本身占用大量系统资源。这些资源是运行 Pod 内容器所需资源的附加资源。 POD 开销 是一个特性,用于计算 Pod 基础设施在容器请求和限制之上消耗的资源。

Pod 开销

在 Kubernetes 中,Pod 的开销是根据与 Pod 的 RuntimeClass 相关联的开销在 准入 时设置的。

当启用 Pod 开销时,在调度 Pod 时,除了考虑容器资源请求的总和外,还要考虑 Pod 开销。类似地,Kubelet 将在确定 Pod cgroup 的大小和执行 Pod 驱逐排序时包含 Pod 开销。

启用 Pod 开销

您需要确保在集群中启用了 PodOverhead 特性门(在 1.18 默认是开启的),以及一个用于定义 overhead 字段的 RuntimeClass

使用示例

要使用 PodOverhead 特性,需要一个定义 overhead 字段的 RuntimeClass. 作为例子,可以在虚拟机和来宾操作系统中通过一个虚拟化容器运行时来定义 RuntimeClass 如下,其中每个 Pod 大约使用 120MiB:

  1. ---
  2. kind: RuntimeClass
  3. apiVersion: node.k8s.io/v1beta1
  4. metadata:
  5. name: kata-fc
  6. handler: kata-fc
  7. overhead:
  8. podFixed:
  9. memory: "120Mi"
  10. cpu: "250m"

通过指定 kata-fc RuntimeClass 处理程序创建的工作负载会将内存和 cpu 开销计入资源配额计算、节点调度以及 Pod cgroup 分级。

假设我们运行下面给出的工作负载示例 test-pod:

  1. apiVersion: v1
  2. kind: Pod
  3. metadata:
  4. name: test-pod
  5. spec:
  6. runtimeClassName: kata-fc
  7. containers:
  8. - name: busybox-ctr
  9. image: busybox
  10. stdin: true
  11. tty: true
  12. resources:
  13. limits:
  14. cpu: 500m
  15. memory: 100Mi
  16. - name: nginx-ctr
  17. image: nginx
  18. resources:
  19. limits:
  20. cpu: 1500m
  21. memory: 100Mi

在准入阶段 RuntimeClass 准入控制器 更新工作负载的 PodSpec 以包含 RuntimeClass 中定义的 overhead. 如果 PodSpec 中该字段已定义,该 Pod 将会被拒绝。在这个例子中,由于只指定了 RuntimeClass 名称,所以准入控制器更新了 Pod, 包含了一个 overhead.

在 RuntimeClass 准入控制器之后,可以检验一下已更新的 PodSpec:

  1. kubectl get pod test-pod -o jsonpath='{.spec.overhead}'

输出:

  1. map[cpu:250m memory:120Mi]

如果定义了 ResourceQuata, 则容器请求的总量以及 overhead 字段都将计算在内。

当 kube-scheduler 决定在哪一个节点调度运行新的 Pod 时,调度器会兼顾该 Pod 的 overhead 以及该 Pod 的容器请求总量。在这个示例中,调度器将资源请求和开销相加,然后寻找具备 2.25 CPU 和 320 MiB 内存可用的节点。

一旦 Pod 调度到了某个节点, 该节点上的 kubelet 将为该 Pod 新建一个 cgroup一组具有可选资源隔离、审计和限制的 Linux 进程。 . 底层容器运行时将在这个 pod 中创建容器。

如果该资源对每一个容器都定义了一个限制(定义了受限的 Guaranteed QoS 或者 Bustrable QoS),kubelet 会为与该资源(CPU 的 cpu.cfs_quota_us 以及内存的 memory.limit_in_bytes) 相关的 pod cgroup 设定一个上限。该上限基于容器限制总量与 PodSpec 中定义的 overhead 之和。

对于 CPU, 如果 Pod 的 QoS 是 Guaranteed 或者 Burstable, kubelet 会基于容器请求总量与 PodSpec 中定义的 overhead 之和设置 cpu.shares.

请看这个例子,验证工作负载的容器请求:

  1. kubectl get pod test-pod -o jsonpath='{.spec.containers[*].resources.limits}'

容器请求总计 2000m CPU 和 200MiB 内存:

  1. map[cpu: 500m memory:100Mi] map[cpu:1500m memory:100Mi]

对照从节点观察到的情况来检查一下:

  1. kubectl describe node | grep test-pod -B2

该输出显示请求了 2250m CPU 以及 320MiB 内存,包含了 PodOverhead 在内:

  1. Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits AGE
  2. --------- ---- ------------ ---------- --------------- ------------- ---
  3. default test-pod 2250m (56%) 2250m (56%) 320Mi (1%) 320Mi (1%) 36m

验证 Pod cgroup 限制

在工作负载所运行的节点上检查 Pod 的内存 cgroups. 在接下来的例子中,将在该节点上使用具备 CRI 兼容的容器运行时命令行工具 crictl. 这是一个展示 PodOverhead 行为的进阶示例,用户并不需要直接在该节点上检查 cgroups.

首先在特定的节点上确定该 Pod 的标识符:ying

  1. # 在该 Pod 调度的节点上执行如下命令:
  2. POD_ID="$(sudo crictl pods --name test-pod -q)"

可以依此判断该 Pod 的 cgroup 路径:

  1. # 在该 Pod 调度的节点上执行如下命令:
  2. sudo crictl inspectp -o=json $POD_ID | grep cgroupsPath

执行结果的 cgroup 路径中包含了该 Pod 的 pause 容器。Pod 级别的 cgroup 即上面的一个目录。

  1. "cgroupsPath": "/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/7ccf55aee35dd16aca4189c952d83487297f3cd760f1bbf09620e206e7d0c27a"

在这个例子中,该 pod 的 cgroup 路径是 kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2。验证内存的 Pod 级别 cgroup 设置:

  1. # 在该 Pod 调度的节点上执行这个命令。
  2. # 另外,修改 cgroup 的名称以匹配为该 pod 分配的 cgroup。
  3. cat /sys/fs/cgroup/memory/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/memory.limit_in_bytes

和预期的一样是 320 MiB

  1. 335544320

可观察性

kube-state-metrics 中可以通过 kube_pod_overhead 指标来协助确定何时使用 PodOverhead 以及协助观察以一个既定开销运行的工作负载的稳定性。 该特性在 kube-state-metrics 的 1.9 发行版本中不可用,不过预计将在后续版本中发布。在此之前,用户需要从源代码构建 kube-state-metrics.

接下来