Sorting and Related Functions

Julia has an extensive, flexible API for sorting and interacting with already-sorted arrays of values. By default, Julia picks reasonable algorithms and sorts in standard ascending order:

  1. julia> sort([2,3,1])
  2. 3-element Vector{Int64}:
  3. 1
  4. 2
  5. 3

You can easily sort in reverse order as well:

  1. julia> sort([2,3,1], rev=true)
  2. 3-element Vector{Int64}:
  3. 3
  4. 2
  5. 1

sort constructs a sorted copy leaving its input unchanged. Use the “bang” version of the sort function to mutate an existing array:

  1. julia> a = [2,3,1];
  2. julia> sort!(a);
  3. julia> a
  4. 3-element Vector{Int64}:
  5. 1
  6. 2
  7. 3

Instead of directly sorting an array, you can compute a permutation of the array’s indices that puts the array into sorted order:

  1. julia> v = randn(5)
  2. 5-element Array{Float64,1}:
  3. 0.297288
  4. 0.382396
  5. -0.597634
  6. -0.0104452
  7. -0.839027
  8. julia> p = sortperm(v)
  9. 5-element Array{Int64,1}:
  10. 5
  11. 3
  12. 4
  13. 1
  14. 2
  15. julia> v[p]
  16. 5-element Array{Float64,1}:
  17. -0.839027
  18. -0.597634
  19. -0.0104452
  20. 0.297288
  21. 0.382396

Arrays can easily be sorted according to an arbitrary transformation of their values:

  1. julia> sort(v, by=abs)
  2. 5-element Array{Float64,1}:
  3. -0.0104452
  4. 0.297288
  5. 0.382396
  6. -0.597634
  7. -0.839027

Or in reverse order by a transformation:

  1. julia> sort(v, by=abs, rev=true)
  2. 5-element Array{Float64,1}:
  3. -0.839027
  4. -0.597634
  5. 0.382396
  6. 0.297288
  7. -0.0104452

If needed, the sorting algorithm can be chosen:

  1. julia> sort(v, alg=InsertionSort)
  2. 5-element Array{Float64,1}:
  3. -0.839027
  4. -0.597634
  5. -0.0104452
  6. 0.297288
  7. 0.382396

All the sorting and order related functions rely on a “less than” relation defining a total order on the values to be manipulated. The isless function is invoked by default, but the relation can be specified via the lt keyword.

Sorting Functions

Base.sort! — Function

  1. sort!(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Sort the vector v in place. A stable algorithm is used by default. You can select a specific algorithm to use via the alg keyword (see Sorting Algorithms for available algorithms). The by keyword lets you provide a function that will be applied to each element before comparison; the lt keyword allows providing a custom “less than” function (note that for every x and y, only one of lt(x,y) and lt(y,x) can return true); use rev=true to reverse the sorting order. These options are independent and can be used together in all possible combinations: if both by and lt are specified, the lt function is applied to the result of the by function; rev=true reverses whatever ordering specified via the by and lt keywords.

Examples

  1. julia> v = [3, 1, 2]; sort!(v); v
  2. 3-element Vector{Int64}:
  3. 1
  4. 2
  5. 3
  6. julia> v = [3, 1, 2]; sort!(v, rev = true); v
  7. 3-element Vector{Int64}:
  8. 3
  9. 2
  10. 1
  11. julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[1]); v
  12. 3-element Vector{Tuple{Int64, String}}:
  13. (1, "c")
  14. (2, "b")
  15. (3, "a")
  16. julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[2]); v
  17. 3-element Vector{Tuple{Int64, String}}:
  18. (3, "a")
  19. (2, "b")
  20. (1, "c")

source

  1. sort!(A; dims::Integer, alg::Algorithm=defalg(A), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Sort the multidimensional array A along dimension dims. See sort! for a description of possible keyword arguments.

To sort slices of an array, refer to sortslices.

Julia 1.1

This function requires at least Julia 1.1.

Examples

  1. julia> A = [4 3; 1 2]
  2. 2×2 Matrix{Int64}:
  3. 4 3
  4. 1 2
  5. julia> sort!(A, dims = 1); A
  6. 2×2 Matrix{Int64}:
  7. 1 2
  8. 4 3
  9. julia> sort!(A, dims = 2); A
  10. 2×2 Matrix{Int64}:
  11. 1 2
  12. 3 4

source

Base.sort — Function

  1. sort(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Variant of sort! that returns a sorted copy of v leaving v itself unmodified.

Examples

  1. julia> v = [3, 1, 2];
  2. julia> sort(v)
  3. 3-element Vector{Int64}:
  4. 1
  5. 2
  6. 3
  7. julia> v
  8. 3-element Vector{Int64}:
  9. 3
  10. 1
  11. 2

source

  1. sort(A; dims::Integer, alg::Algorithm=defalg(A), lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Sort a multidimensional array A along the given dimension. See sort! for a description of possible keyword arguments.

To sort slices of an array, refer to sortslices.

Examples

  1. julia> A = [4 3; 1 2]
  2. 2×2 Matrix{Int64}:
  3. 4 3
  4. 1 2
  5. julia> sort(A, dims = 1)
  6. 2×2 Matrix{Int64}:
  7. 1 2
  8. 4 3
  9. julia> sort(A, dims = 2)
  10. 2×2 Matrix{Int64}:
  11. 3 4
  12. 1 2

source

Base.sortperm — Function

  1. sortperm(A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward, [dims::Integer])

Return a permutation vector or array I that puts A[I] in sorted order along the given dimension. If A has more than one dimension, then the dims keyword argument must be specified. The order is specified using the same keywords as sort!. The permutation is guaranteed to be stable even if the sorting algorithm is unstable, meaning that indices of equal elements appear in ascending order.

See also sortperm!, partialsortperm, invperm, indexin. To sort slices of an array, refer to sortslices.

Julia 1.9

The method accepting dims requires at least Julia 1.9.

Examples

  1. julia> v = [3, 1, 2];
  2. julia> p = sortperm(v)
  3. 3-element Vector{Int64}:
  4. 2
  5. 3
  6. 1
  7. julia> v[p]
  8. 3-element Vector{Int64}:
  9. 1
  10. 2
  11. 3
  12. julia> A = [8 7; 5 6]
  13. 2×2 Matrix{Int64}:
  14. 8 7
  15. 5 6
  16. julia> sortperm(A, dims = 1)
  17. 2×2 Matrix{Int64}:
  18. 2 4
  19. 1 3
  20. julia> sortperm(A, dims = 2)
  21. 2×2 Matrix{Int64}:
  22. 3 1
  23. 2 4

source

Base.Sort.InsertionSort — Constant

  1. InsertionSort

Use the insertion sort algorithm.

Insertion sort traverses the collection one element at a time, inserting each element into its correct, sorted position in the output vector.

Characteristics:

  • stable: preserves the ordering of elements which compare equal

(e.g. “a” and “A” in a sort of letters which ignores case).

  • in-place in memory.
  • quadratic performance in the number of elements to be sorted:

it is well-suited to small collections but should not be used for large ones.

source

Base.Sort.MergeSort — Constant

  1. MergeSort

Indicate that a sorting function should use the merge sort algorithm. Merge sort divides the collection into subcollections and repeatedly merges them, sorting each subcollection at each step, until the entire collection has been recombined in sorted form.

Characteristics:

  • stable: preserves the ordering of elements which compare equal (e.g. “a” and “A” in a sort of letters which ignores case).
  • not in-place in memory.
  • divide-and-conquer sort strategy.
  • good performance for large collections but typically not quite as fast as QuickSort.

source

Base.Sort.QuickSort — Constant

  1. QuickSort

Indicate that a sorting function should use the quick sort algorithm, which is not stable.

Characteristics:

  • not stable: does not preserve the ordering of elements which compare equal (e.g. “a” and “A” in a sort of letters which ignores case).
  • in-place in memory.
  • divide-and-conquer: sort strategy similar to MergeSort.
  • good performance for large collections.

source

Base.Sort.PartialQuickSort — Type

  1. PartialQuickSort{T <: Union{Integer,OrdinalRange}}

Indicate that a sorting function should use the partial quick sort algorithm. Partial quick sort returns the smallest k elements sorted from smallest to largest, finding them and sorting them using QuickSort.

Characteristics:

  • not stable: does not preserve the ordering of elements which compare equal (e.g. “a” and “A” in a sort of letters which ignores case).
  • in-place in memory.
  • divide-and-conquer: sort strategy similar to MergeSort.

Note that PartialQuickSort(k) does not necessarily sort the whole array. For example,

  1. julia> x = rand(100);
  2. julia> k = 50:100;
  3. julia> s1 = sort(x; alg=QuickSort);
  4. julia> s2 = sort(x; alg=PartialQuickSort(k));
  5. julia> map(issorted, (s1, s2))
  6. (true, false)
  7. julia> map(x->issorted(x[k]), (s1, s2))
  8. (true, true)
  9. julia> s1[k] == s2[k]
  10. true

source

Base.Sort.sortperm! — Function

  1. sortperm!(ix, A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward, initialized::Bool=false, [dims::Integer])

Like sortperm, but accepts a preallocated index vector or array ix with the same axes as A. If initialized is false (the default), ix is initialized to contain the values LinearIndices(A).

Julia 1.9

The method accepting dims requires at least Julia 1.9.

Examples

  1. julia> v = [3, 1, 2]; p = zeros(Int, 3);
  2. julia> sortperm!(p, v); p
  3. 3-element Vector{Int64}:
  4. 2
  5. 3
  6. 1
  7. julia> v[p]
  8. 3-element Vector{Int64}:
  9. 1
  10. 2
  11. 3
  12. julia> A = [8 7; 5 6]; p = zeros(Int,2, 2);
  13. julia> sortperm!(p, A; dims=1); p
  14. 2×2 Matrix{Int64}:
  15. 2 4
  16. 1 3
  17. julia> sortperm!(p, A; dims=2); p
  18. 2×2 Matrix{Int64}:
  19. 3 1
  20. 2 4

source

Base.sortslices — Function

  1. sortslices(A; dims, alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Sort slices of an array A. The required keyword argument dims must be either an integer or a tuple of integers. It specifies the dimension(s) over which the slices are sorted.

E.g., if A is a matrix, dims=1 will sort rows, dims=2 will sort columns. Note that the default comparison function on one dimensional slices sorts lexicographically.

For the remaining keyword arguments, see the documentation of sort!.

Examples

  1. julia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1) # Sort rows
  2. 3×3 Matrix{Int64}:
  3. -1 6 4
  4. 7 3 5
  5. 9 -2 8
  6. julia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, lt=(x,y)->isless(x[2],y[2]))
  7. 3×3 Matrix{Int64}:
  8. 9 -2 8
  9. 7 3 5
  10. -1 6 4
  11. julia> sortslices([7 3 5; -1 6 4; 9 -2 8], dims=1, rev=true)
  12. 3×3 Matrix{Int64}:
  13. 9 -2 8
  14. 7 3 5
  15. -1 6 4
  16. julia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2) # Sort columns
  17. 3×3 Matrix{Int64}:
  18. 3 5 7
  19. -1 -4 6
  20. -2 8 9
  21. julia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))
  22. 3×3 Matrix{Int64}:
  23. 5 3 7
  24. -4 -1 6
  25. 8 -2 9
  26. julia> sortslices([7 3 5; 6 -1 -4; 9 -2 8], dims=2, rev=true)
  27. 3×3 Matrix{Int64}:
  28. 7 5 3
  29. 6 -4 -1
  30. 9 8 -2

Higher dimensions

sortslices extends naturally to higher dimensions. E.g., if A is a a 2x2x2 array, sortslices(A, dims=3) will sort slices within the 3rd dimension, passing the 2x2 slices A[:, :, 1] and A[:, :, 2] to the comparison function. Note that while there is no default order on higher-dimensional slices, you may use the by or lt keyword argument to specify such an order.

If dims is a tuple, the order of the dimensions in dims is relevant and specifies the linear order of the slices. E.g., if A is three dimensional and dims is (1, 2), the orderings of the first two dimensions are re-arranged such that the slices (of the remaining third dimension) are sorted. If dims is (2, 1) instead, the same slices will be taken, but the result order will be row-major instead.

Higher dimensional examples

  1. julia> A = permutedims(reshape([4 3; 2 1; 'A' 'B'; 'C' 'D'], (2, 2, 2)), (1, 3, 2))
  2. 2×2×2 Array{Any, 3}:
  3. [:, :, 1] =
  4. 4 3
  5. 2 1
  6. [:, :, 2] =
  7. 'A' 'B'
  8. 'C' 'D'
  9. julia> sortslices(A, dims=(1,2))
  10. 2×2×2 Array{Any, 3}:
  11. [:, :, 1] =
  12. 1 3
  13. 2 4
  14. [:, :, 2] =
  15. 'D' 'B'
  16. 'C' 'A'
  17. julia> sortslices(A, dims=(2,1))
  18. 2×2×2 Array{Any, 3}:
  19. [:, :, 1] =
  20. 1 2
  21. 3 4
  22. [:, :, 2] =
  23. 'D' 'C'
  24. 'B' 'A'
  25. julia> sortslices(reshape([5; 4; 3; 2; 1], (1,1,5)), dims=3, by=x->x[1,1])
  26. 1×1×5 Array{Int64, 3}:
  27. [:, :, 1] =
  28. 1
  29. [:, :, 2] =
  30. 2
  31. [:, :, 3] =
  32. 3
  33. [:, :, 4] =
  34. 4
  35. [:, :, 5] =
  36. 5

source

Base.issorted — Function

  1. issorted(v, lt=isless, by=identity, rev::Bool=false, order::Ordering=Forward)

Test whether a vector is in sorted order. The lt, by and rev keywords modify what order is considered to be sorted just as they do for sort.

Examples

  1. julia> issorted([1, 2, 3])
  2. true
  3. julia> issorted([(1, "b"), (2, "a")], by = x -> x[1])
  4. true
  5. julia> issorted([(1, "b"), (2, "a")], by = x -> x[2])
  6. false
  7. julia> issorted([(1, "b"), (2, "a")], by = x -> x[2], rev=true)
  8. true

source

Base.Sort.searchsorted — Function

  1. searchsorted(a, x; by=<transform>, lt=<comparison>, rev=false)

Return the range of indices of a which compare as equal to x (using binary search) according to the order specified by the by, lt and rev keywords, assuming that a is already sorted in that order. Return an empty range located at the insertion point if a does not contain values equal to x.

See also: insorted, searchsortedfirst, sort, findall.

Examples

  1. julia> searchsorted([1, 2, 4, 5, 5, 7], 4) # single match
  2. 3:3
  3. julia> searchsorted([1, 2, 4, 5, 5, 7], 5) # multiple matches
  4. 4:5
  5. julia> searchsorted([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle
  6. 3:2
  7. julia> searchsorted([1, 2, 4, 5, 5, 7], 9) # no match, insert at end
  8. 7:6
  9. julia> searchsorted([1, 2, 4, 5, 5, 7], 0) # no match, insert at start
  10. 1:0

source

Base.Sort.searchsortedfirst — Function

  1. searchsortedfirst(a, x; by=<transform>, lt=<comparison>, rev=false)

Return the index of the first value in a greater than or equal to x, according to the specified order. Return lastindex(a) + 1 if x is greater than all values in a. a is assumed to be sorted.

insert!ing x at this index will maintain sorted order.

See also: searchsortedlast, searchsorted, findfirst.

Examples

  1. julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 4) # single match
  2. 3
  3. julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 5) # multiple matches
  4. 4
  5. julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle
  6. 3
  7. julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 9) # no match, insert at end
  8. 7
  9. julia> searchsortedfirst([1, 2, 4, 5, 5, 7], 0) # no match, insert at start
  10. 1

source

Base.Sort.searchsortedlast — Function

  1. searchsortedlast(a, x; by=<transform>, lt=<comparison>, rev=false)

Return the index of the last value in a less than or equal to x, according to the specified order. Return firstindex(a) - 1 if x is less than all values in a. a is assumed to be sorted.

Examples

  1. julia> searchsortedlast([1, 2, 4, 5, 5, 7], 4) # single match
  2. 3
  3. julia> searchsortedlast([1, 2, 4, 5, 5, 7], 5) # multiple matches
  4. 5
  5. julia> searchsortedlast([1, 2, 4, 5, 5, 7], 3) # no match, insert in the middle
  6. 2
  7. julia> searchsortedlast([1, 2, 4, 5, 5, 7], 9) # no match, insert at end
  8. 6
  9. julia> searchsortedlast([1, 2, 4, 5, 5, 7], 0) # no match, insert at start
  10. 0

source

Base.Sort.insorted — Function

  1. insorted(x, a; by=<transform>, lt=<comparison>, rev=false) -> Bool

Determine whether an item x is in the sorted collection a, in the sense that it is \== to one of the values of the collection according to the order specified by the by, lt and rev keywords, assuming that a is already sorted in that order, see sort for the keywords.

See also in.

Examples

  1. julia> insorted(4, [1, 2, 4, 5, 5, 7]) # single match
  2. true
  3. julia> insorted(5, [1, 2, 4, 5, 5, 7]) # multiple matches
  4. true
  5. julia> insorted(3, [1, 2, 4, 5, 5, 7]) # no match
  6. false
  7. julia> insorted(9, [1, 2, 4, 5, 5, 7]) # no match
  8. false
  9. julia> insorted(0, [1, 2, 4, 5, 5, 7]) # no match
  10. false

Julia 1.6

insorted was added in Julia 1.6.

source

Base.Sort.partialsort! — Function

  1. partialsort!(v, k; by=<transform>, lt=<comparison>, rev=false)

Partially sort the vector v in place, according to the order specified by by, lt and rev so that the value at index k (or range of adjacent values if k is a range) occurs at the position where it would appear if the array were fully sorted. If k is a single index, that value is returned; if k is a range, an array of values at those indices is returned. Note that partialsort! may not fully sort the input array.

Examples

  1. julia> a = [1, 2, 4, 3, 4]
  2. 5-element Vector{Int64}:
  3. 1
  4. 2
  5. 4
  6. 3
  7. 4
  8. julia> partialsort!(a, 4)
  9. 4
  10. julia> a
  11. 5-element Vector{Int64}:
  12. 1
  13. 2
  14. 3
  15. 4
  16. 4
  17. julia> a = [1, 2, 4, 3, 4]
  18. 5-element Vector{Int64}:
  19. 1
  20. 2
  21. 4
  22. 3
  23. 4
  24. julia> partialsort!(a, 4, rev=true)
  25. 2
  26. julia> a
  27. 5-element Vector{Int64}:
  28. 4
  29. 4
  30. 3
  31. 2
  32. 1

source

Base.Sort.partialsort — Function

  1. partialsort(v, k, by=<transform>, lt=<comparison>, rev=false)

Variant of partialsort! which copies v before partially sorting it, thereby returning the same thing as partialsort! but leaving v unmodified.

source

Base.Sort.partialsortperm — Function

  1. partialsortperm(v, k; by=<transform>, lt=<comparison>, rev=false)

Return a partial permutation I of the vector v, so that v[I] returns values of a fully sorted version of v at index k. If k is a range, a vector of indices is returned; if k is an integer, a single index is returned. The order is specified using the same keywords as sort!. The permutation is stable, meaning that indices of equal elements appear in ascending order.

Note that this function is equivalent to, but more efficient than, calling sortperm(...)[k].

Examples

  1. julia> v = [3, 1, 2, 1];
  2. julia> v[partialsortperm(v, 1)]
  3. 1
  4. julia> p = partialsortperm(v, 1:3)
  5. 3-element view(::Vector{Int64}, 1:3) with eltype Int64:
  6. 2
  7. 4
  8. 3
  9. julia> v[p]
  10. 3-element Vector{Int64}:
  11. 1
  12. 1
  13. 2

source

Base.Sort.partialsortperm! — Function

  1. partialsortperm!(ix, v, k; by=<transform>, lt=<comparison>, rev=false, initialized=false)

Like partialsortperm, but accepts a preallocated index vector ix the same size as v, which is used to store (a permutation of) the indices of v.

If the index vector ix is initialized with the indices of v (or a permutation thereof), initialized should be set to true.

If initialized is false (the default), then ix is initialized to contain the indices of v.

If initialized is true, but ix does not contain (a permutation of) the indices of v, the behavior of partialsortperm! is undefined.

(Typically, the indices of v will be 1:length(v), although if v has an alternative array type with non-one-based indices, such as an OffsetArray, ix must also be an OffsetArray with the same indices, and must contain as values (a permutation of) these same indices.)

Upon return, ix is guaranteed to have the indices k in their sorted positions, such that

  1. partialsortperm!(ix, v, k);
  2. v[ix[k]] == partialsort(v, k)

The return value is the kth element of ix if k is an integer, or view into ix if k is a range.

Examples

  1. julia> v = [3, 1, 2, 1];
  2. julia> ix = Vector{Int}(undef, 4);
  3. julia> partialsortperm!(ix, v, 1)
  4. 2
  5. julia> ix = [1:4;];
  6. julia> partialsortperm!(ix, v, 2:3, initialized=true)
  7. 2-element view(::Vector{Int64}, 2:3) with eltype Int64:
  8. 4
  9. 3

source

Sorting Algorithms

There are currently four sorting algorithms publicly available in base Julia:

By default, the sort family of functions uses stable sorting algorithms that are fast on most inputs. The exact algorithm choice is an implementation detail to allow for future performance improvements. Currently, a hybrid of RadixSort, ScratchQuickSort, InsertionSort, and CountingSort is used based on input type, size, and composition. Implementation details are subject to change but currently available in the extended help of ??Base.DEFAULT_STABLE and the docstrings of internal sorting algorithms listed there.

You can explicitly specify your preferred algorithm with the alg keyword (e.g. sort!(v, alg=PartialQuickSort(10:20))) or reconfigure the default sorting algorithm for custom types by adding a specialized method to the Base.Sort.defalg function. For example, InlineStrings.jl defines the following method:

  1. Base.Sort.defalg(::AbstractArray{<:Union{SmallInlineStrings, Missing}}) = InlineStringSort

Julia 1.9

The default sorting algorithm (returned by Base.Sort.defalg) is guaranteed to be stable since Julia 1.9. Previous versions had unstable edge cases when sorting numeric arrays.

Alternate orderings

By default, sort and related functions use isless to compare two elements in order to determine which should come first. The Base.Order.Ordering abstract type provides a mechanism for defining alternate orderings on the same set of elements. Instances of Ordering define a total order on a set of elements, so that for any elements a, b, c the following hold:

  • Exactly one of the following is true: a is less than b, b is less than a, or a and b are equal (according to isequal).
  • The relation is transitive - if a is less than b and b is less than c then a is less than c.

The Base.Order.lt function works as a generalization of isless to test whether a is less than b according to a given order.

Base.Order.Ordering — Type

  1. Base.Order.Ordering

Abstract type which represents a total order on some set of elements.

Use Base.Order.lt to compare two elements according to the ordering.

source

Base.Order.lt — Function

  1. lt(o::Ordering, a, b)

Test whether a is less than b according to the ordering o.

source

Base.Order.ord — Function

  1. ord(lt, by, rev::Union{Bool, Nothing}, order::Ordering=Forward)

Construct an Ordering object from the same arguments used by sort!. Elements are first transformed by the function by (which may be identity) and are then compared according to either the function lt or an existing ordering order. lt should be isless or a function which obeys similar rules. Finally, the resulting order is reversed if rev=true.

Passing an lt other than isless along with an order other than Base.Order.Forward or Base.Order.Reverse is not permitted, otherwise all options are independent and can be used together in all possible combinations.

source

Base.Order.Forward — Constant

  1. Base.Order.Forward

Default ordering according to isless.

source

Base.Order.ReverseOrdering — Type

  1. ReverseOrdering(fwd::Ordering=Forward)

A wrapper which reverses an ordering.

For a given Ordering o, the following holds for all a, b:

  1. lt(ReverseOrdering(o), a, b) == lt(o, b, a)

source

Base.Order.Reverse — Constant

  1. Base.Order.Reverse

Reverse ordering according to isless.

source

Base.Order.By — Type

  1. By(by, order::Ordering=Forward)

Ordering which applies order to elements after they have been transformed by the function by.

source

Base.Order.Lt — Type

  1. Lt(lt)

Ordering which calls lt(a, b) to compare elements. lt should obey the same rules as implementations of isless.

source

Base.Order.Perm — Type

  1. Perm(order::Ordering, data::AbstractVector)

Ordering on the indices of data where i is less than j if data[i] is less than data[j] according to order. In the case that data[i] and data[j] are equal, i and j are compared by numeric value.

source