调用 C 和 Fortran 代码
在数值计算领域,尽管有很多用 C 语言或 Fortran 写的高质量且成熟的库都可以用 Julia 重写,但为了便捷利用现有的 C 或 Fortran 代码,Julia 提供简洁且高效的调用方式。Julia 的哲学是 no boilerplate
: Julia 可以直接调用 C/Fortran 的函数,不需要任何”胶水”代码,代码生成或其它编译过程 – 即使在交互式会话 (REPL/Jupyter notebook) 中使用也一样. 在 Julia 中,上述特性可以仅仅通过调用 ccall
实现,它的语法看起来就像是普通的函数调用。
The code to be called must be available as a shared library. Most C and Fortran libraries ship compiled as shared libraries already, but if you are compiling the code yourself using GCC (or Clang), you will need to use the -shared
and -fPIC
options. The machine instructions generated by Julia’s JIT are the same as a native C call would be, so the resulting overhead is the same as calling a library function from C code. [1]
Shared libraries and functions are referenced by a tuple of the form (:function, "library")
or ("function", "library")
where function
is the C-exported function name, and library
refers to the shared library name. Shared libraries available in the (platform-specific) load path will be resolved by name. The full path to the library may also be specified.
可以单独使用函数名来代替元组(只用 :function
或 "function"
)。在这种情况下,函数名在当前进程中进行解析。这一调用形式可用于调用 C 库函数、Julia 运行时中的函数或链接到 Julia 的应用程序中的函数。
默认情况下,Fortran 编译器会进行名称修饰(例如,将函数名转换为小写或大写,通常会添加下划线),要通过 ccall
调用 Fortran 函数,传递的标识符必须与 Fortran 编译器名称修饰之后的一致。此外,在调用 Fortran 函数时,所有输入必须以指针形式传递,并已在堆或栈上分配内存。这不仅适用于通常是堆分配的数组及可变对象,而且适用于整数和浮点数等标量值,尽管这些值通常是栈分配的,且在使用 C 或 Julia 调用约定时通常是通过寄存器传递的。
Finally, you can use ccall
to actually generate a call to the library function. The arguments to ccall
are:
A
(:function, "library")
pair (most common),或
a
:function
name symbol or"function"
name string (for symbols in the current process or libc),或
一个函数指针(例如,从
dlsym
获得的指针)。The function’s return type
A tuple of input types, corresponding to the function signature
The actual argument values to be passed to the function, if any; each is a separate parameter.
Note
The (:function, "library")
pair, return type, and input types must be literal constants (i.e., they can’t be variables, but see Non-constant Function Specifications below).
The remaining parameters are evaluated at compile time, when the containing method is defined.
Note
See below for how to map C types to Julia types.
As a complete but simple example, the following calls the clock
function from the standard C library on most Unix-derived systems:
julia> t = ccall(:clock, Int32, ())
2292761
julia> t
2292761
julia> typeof(ans)
Int32
clock
takes no arguments and returns an Int32
. One common gotcha is that a 1-tuple of argument types must be written with a trailing comma. For example, to call the getenv
function to get a pointer to the value of an environment variable, one makes a call like this:
julia> path = ccall(:getenv, Cstring, (Cstring,), "SHELL")
Cstring(@0x00007fff5fbffc45)
julia> unsafe_string(path)
"/bin/bash"
请注意,参数类型元组必须是 (Cstring,)
,而不是 (Cstring)
。这是因为 (Cstring)
只是括号括起来的表达式 Cstring
,而不是包含 Cstring
的单元组:
julia> (Cstring)
Cstring
julia> (Cstring,)
(Cstring,)
在实践中,特别是在提供可重用功能时,通常会将 ccall
封装成一个 Julia 函数,此函数负责为 ccall
配置参数,且无论 C 或 Fortran 函数以任何方式产生错误,此函数都会对其进行检查并将异常传递给调用者。这一点尤其重要,因为 C 和 Fortran 的 API 在出错时的表现形式和行为极其不一致。例如,C 库函数 getenv
在 Julia 中的封装可以在 env.jl
里找到,该封装的一个简化版本如下:
function getenv(var::AbstractString)
val = ccall(:getenv, Cstring, (Cstring,), var)
if val == C_NULL
error("getenv: undefined variable: ", var)
end
return unsafe_string(val)
end
C 函数 getenv
通过返回 NULL
的方式进行报错,但是其他 C 标准库函数也会通过多种不同的方式来报错,这包括返回 -1,0,1 以及其它特殊值。此封装能够明确地抛出异常信息,即是否调用者在尝试获取一个不存在的环境变量:
julia> getenv("SHELL")
"/bin/bash"
julia> getenv("FOOBAR")
getenv: undefined variable: FOOBAR
Here is a slightly more complex example that discovers the local machine’s hostname. In this example, the networking library code is assumed to be in a shared library named “libc”. In practice, this function is usually part of the C standard library, and so the “libc” portion should be omitted, but we wish to show here the usage of this syntax.
function gethostname()
hostname = Vector{UInt8}(undef, 256) # MAXHOSTNAMELEN
err = ccall((:gethostname, "libc"), Int32,
(Ptr{UInt8}, Csize_t),
hostname, sizeof(hostname))
Base.systemerror("gethostname", err != 0)
hostname[end] = 0 # ensure null-termination
return unsafe_string(pointer(hostname))
end
这个例子首先分配一个由bytes组成的数组,然后调用C库函数gethostname
用主机名填充数组,获取指向主机名缓冲区的指针,假设它是一个以NUL终止的C字符串,并将指针转换为指向Julia字符串的指针。 这种使用这种需要调用者分配内存以传递给被调用者来填充的模式对于C库函数很常见。 Julia中类似的内存分配通常是通过创建一个未初始化的数组并将指向其数据的指针传递给C函数来完成的。 这就是我们不在这里使用Cstring
类型的原因:由于数组未初始化,它可能包含NUL字节。转换到Cstring
作为 ccall
的一部分会检查包含的NUL字节,因此可能会抛出转换错误。
创建和C兼容的Julia函数指针
可以将Julia函数传递给接受函数指针参数的原生C函数。例如,要匹配满足下面的C原型:
typedef returntype (*functiontype)(argumenttype, ...)
The macro @cfunction
generates the C-compatible function pointer for a call to a Julia function. The arguments to @cfunction
are:
- A Julia function
- The function’s return type
- A tuple of input types, corresponding to the function signature
Note
As with ccall
, the return type and tuple of input types must be literal constants.
Note
Currently, only the platform-default C calling convention is supported. This means that @cfunction
-generated pointers cannot be used in calls where WINAPI expects stdcall
function on 32-bit Windows, but can be used on WIN64 (where stdcall
is unified with the C calling convention).
一个典型的例子就是标准C库函数qsort
,定义为:
void qsort(void *base, size_t nmemb, size_t size,
int (*compare)(const void*, const void*));
The base
argument is a pointer to an array of length nmemb
, with elements of size
bytes each. compare
is a callback function which takes pointers to two elements a
and b
and returns an integer less/greater than zero if a
should appear before/after b
(or zero if any order is permitted).
Now, suppose that we have a 1d array A
of values in Julia that we want to sort using the qsort
function (rather than Julia’s built-in sort
function). Before we worry about calling qsort
and passing arguments, we need to write a comparison function:
julia> function mycompare(a, b)::Cint
return (a < b) ? -1 : ((a > b) ? +1 : 0)
end
mycompare (generic function with 1 method)
$qsort$ expects a comparison function that return a C $int$, so we annotate the return type to be $Cint$.
In order to pass this function to C, we obtain its address using the macro @cfunction
:
julia> mycompare_c = @cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));
@cfunction
需要三个参数: Julia函数 (mycompare
), 返回值类型(Cint
), 和一个输入参数类型的值元组, 此处是要排序的Cdouble
(Float64
) 元素的数组.
qsort
的最终调用看起来是这样的:
julia> A = [1.3, -2.7, 4.4, 3.1]
4-element Array{Float64,1}:
1.3
-2.7
4.4
3.1
julia> ccall(:qsort, Cvoid, (Ptr{Cdouble}, Csize_t, Csize_t, Ptr{Cvoid}),
A, length(A), sizeof(eltype(A)), mycompare_c)
julia> A
4-element Array{Float64,1}:
-2.7
1.3
3.1
4.4
As can be seen, A
is changed to the sorted array [-2.7, 1.3, 3.1, 4.4]
. Note that Julia takes care of converting the array to a Ptr{Cdouble}
), computing the size of the element type in bytes, and so on.
For fun, try inserting a println("mycompare($a, $b)")
line into mycompare
, which will allow you to see the comparisons that qsort
is performing (and to verify that it is really calling the Julia function that you passed to it).
Mapping C Types to Julia
It is critical to exactly match the declared C type with its declaration in Julia. Inconsistencies can cause code that works correctly on one system to fail or produce indeterminate results on a different system.
Note that no C header files are used anywhere in the process of calling C functions: you are responsible for making sure that your Julia types and call signatures accurately reflect those in the C header file.[2]
Automatic Type Conversion
Julia automatically inserts calls to the Base.cconvert
function to convert each argument to the specified type. For example, the following call:
ccall((:foo, "libfoo"), Cvoid, (Int32, Float64), x, y)
will behave as if the following were written:
ccall((:foo, "libfoo"), Cvoid, (Int32, Float64),
Base.unsafe_convert(Int32, Base.cconvert(Int32, x)),
Base.unsafe_convert(Float64, Base.cconvert(Float64, y)))
Base.cconvert
normally just calls convert
, but can be defined to return an arbitrary new object more appropriate for passing to C. This should be used to perform all allocations of memory that will be accessed by the C code. For example, this is used to convert an Array
of objects (e.g. strings) to an array of pointers.
Base.unsafe_convert
handles conversion to Ptr
types. It is considered unsafe because converting an object to a native pointer can hide the object from the garbage collector, causing it to be freed prematurely.
Type Correspondences
First, let’s review some relevant Julia type terminology:
语法 / 关键字 | 例子 | 描述 |
---|---|---|
mutable struct | BitSet | Leaf Type :包含 type-tag 的一组相关数据,由 Julia GC 管理,通过 object-identity 来定义。为了保证实例可以被构造,Leaf Type 必须是完整定义的,即不允许使用 TypeVars 。 |
abstract type | Any , AbstractArray{T, N} , Complex{T} | Super Type :用于描述一组类型,它不是 Leaf-Type ,也无法被实例化。 |
T{A} | Vector{Int} | Type Parameter :某种类型的一种具体化,通常用于分派或存储优化。 |
TypeVar :Type parameter 声明中的 T 是一个 TypeVar ,它是类型变量的简称。 | ||
primitive type | Int , Float64 | Primitive Type :一种没有成员变量的类型,但是它有大小。It is stored and defined by-value. |
struct | Pair{Int, Int} | “Struct” :: A type with all fields defined to be constant. It is defined by-value, and may be stored with a type-tag. |
ComplexF64 (isbits ) | “Is-Bits” :: A primitive type , or a struct type where all fields are other isbits types. It is defined by-value, and is stored without a type-tag. | |
struct …; end | nothing | Singleton :没有成员变量的 Leaf Type 或 Struct 。 |
(…) or tuple(…) | (1, 2, 3) | “Tuple” :: an immutable data-structure similar to an anonymous struct type, or a constant array. Represented as either an array or a struct. |
Bits Types
There are several special types to be aware of, as no other type can be defined to behave the same:
Float32
和C语言中的
float
类型完全对应(以及Fortran中的REAL*4
)Float64
和C语言中的
double
类型完全对应(以及Fortran中的REAL*8
)ComplexF32
和C语言中的
complex float
类型完全对应(以及Fortran中的COMPLEX*8
)ComplexF64
和C语言中的
complex double
类型完全对应(以及Fortran中的COMPLEX*16
)Signed
和C语言中的
signed
类型标识完全对应(以及Fortran中的任意INTEGER
类型) Julia中任何不是Signed
的子类型的类型,都会被认为是unsigned类型。
Ref{T}
和
Ptr{T}
行为相同,能通过Julia的GC管理其内存。
Array{T,N}
When an array is passed to C as a
Ptr{T}
argument, it is not reinterpret-cast: Julia requires that the element type of the array matchesT
, and the address of the first element is passed.因此,如果一个
Array
中的数据格式不正确,它必须被显式地转换 ,通过类似trunc(Int32, a)
的函数。若要将一个数组
A
以不同类型的指针传递,而不提前转换数据, (比如,将一个Float64
数组传给一个处理原生字节的函数时),你 可以将这一参数声明为Ptr{Cvoid}
。如果一个元素类型为
Ptr{T}
的数组作为Ptr{Ptr{T}}
类型的参数传递,Base.cconvert
将会首先尝试进行 null-terminated copy(即直到下一个元素为null才停止复制),并将每一个元素使用其通过Base.cconvert
转换后的版本替换。 这允许,比如,将一个argv
的指针数组,其类型为Vector{String}
,传递给一个类型为Ptr{Ptr{Cchar}}
的参数。
在所有我们当前支持的系统上,C/C++中的基本值类型都能以如下的方式对应到Julia类型。每一个C类型也有一个对应的同名Julia类型,添加一个‘C’前缀。 这在写可移植代码时将非常有用(注意到,C中的 int
类型和Julia的 Int
不同)。
System Independent Types
C 类型 | Fortran 类型 | 标准 Julia 别名 | Julia 基本类型 |
---|---|---|---|
unsigned char | CHARACTER | Cuchar | UInt8 |
bool (_Bool in C99+) | Cuchar | UInt8 | |
short | INTEGER2 , LOGICAL 2 | Cshort | Int16 |
unsigned short | Cushort | UInt16 | |
int , BOOL (C, typical) | INTEGER4 , LOGICAL 4 | Cint | Int32 |
unsigned int | Cuint | UInt32 | |
long long | INTEGER8 , LOGICAL 8 | Clonglong | Int64 |
unsigned long long | Culonglong | UInt64 | |
intmax_t | Cintmax_t | Int64 | |
uintmax_t | Cuintmax_t | UInt64 | |
float | REAL4i | Cfloat | Float32 |
double | REAL8 | Cdouble | Float64 |
complex float | COMPLEX8 | ComplexF32 | Complex{Float32} |
complex double | COMPLEX16 | ComplexF64 | Complex{Float64} |
ptrdiff_t | Cptrdiff_t | Int | |
ssize_t | Cssize_t | Int | |
size_t | Csize_t | UInt | |
void | Cvoid | ||
void and [[noreturn]] or _Noreturn | Union{} | ||
void | Ptr{Cvoid} | ||
T (where T represents an appropriately defined type) | Ref{T} | ||
char (or char[] , e.g. a string) | CHARACTERN | Cstring if NUL-terminated, or Ptr{UInt8} if not | |
char (or char[] ) | Ptr{Ptr{UInt8}} | ||
jl_value_t (any Julia Type) | Any | ||
jl_value_t (a reference to a Julia Type) | Ref{Any} | ||
va_arg | Not supported | ||
… (variadic function specification) | T… (where T is one of the above types, variadic functions of different argument types are not supported) |
The Cstring
type is essentially a synonym for Ptr{UInt8}
, except the conversion to Cstring
throws an error if the Julia string contains any embedded NUL characters (which would cause the string to be silently truncated if the C routine treats NUL as the terminator). If you are passing a char*
to a C routine that does not assume NUL termination (e.g. because you pass an explicit string length), or if you know for certain that your Julia string does not contain NUL and want to skip the check, you can use Ptr{UInt8}
as the argument type. Cstring
can also be used as the ccall
return type, but in that case it obviously does not introduce any extra checks and is only meant to improve readability of the call.
System Dependent Types
C 类型 | 标准 Julia 别名 | Julia 基本类型 |
---|---|---|
char | Cchar | Int8 (x86, x86_64), UInt8 (powerpc, arm) |
long | Clong | Int (UNIX), Int32 (Windows) |
unsigned long | Culong | UInt (UNIX), UInt32 (Windows) |
wchar_t | Cwchar_t | Int32 (UNIX), UInt16 (Windows) |
Note
When calling Fortran, all inputs must be passed by pointers to heap- or stack-allocated values, so all type correspondences above should contain an additional Ptr{..}
or Ref{..}
wrapper around their type specification.
Warning
For string arguments (char*
) the Julia type should be Cstring
(if NUL- terminated data is expected) or either Ptr{Cchar}
or Ptr{UInt8}
otherwise (these two pointer types have the same effect), as described above, not String
. Similarly, for array arguments (T[]
or T*
), the Julia type should again be Ptr{T}
, not Vector{T}
.
Warning
Julia’s Char
type is 32 bits, which is not the same as the wide character type (wchar_t
or wint_t
) on all platforms.
Warning
A return type of Union{}
means the function will not return i.e. C++11 [[noreturn]]
or C11 _Noreturn
(e.g. jl_throw
or longjmp
). Do not use this for functions that return no value (void
) but do return, use Cvoid
instead.
Note
For wchar_t*
arguments, the Julia type should be Cwstring
(if the C routine expects a NUL-terminated string) or Ptr{Cwchar_t}
otherwise. Note also that UTF-8 string data in Julia is internally NUL-terminated, so it can be passed to C functions expecting NUL-terminated data without making a copy (but using the Cwstring
type will cause an error to be thrown if the string itself contains NUL characters).
Note
C functions that take an argument of the type char**
can be called by using a Ptr{Ptr{UInt8}}
type within Julia. For example, C functions of the form:
int main(int argc, char **argv);
can be called via the following Julia code:
argv = [ "a.out", "arg1", "arg2" ]
ccall(:main, Int32, (Int32, Ptr{Ptr{UInt8}}), length(argv), argv)
Note
For Fortran functions taking variable length strings of type character(len=*)
the string lengths are provided as hidden arguments. Type and position of these arguments in the list are compiler specific, where compiler vendors usually default to using Csize_t
as type and append the hidden arguments at the end of the argument list. While this behaviour is fixed for some compilers (GNU), others optionally permit placing hidden arguments directly after the character argument (Intel,PGI). For example, Fortran subroutines of the form
subroutine test(str1, str2)
character(len=*) :: str1,str2
can be called via the following Julia code, where the lengths are appended
str1 = "foo"
str2 = "bar"
ccall(:test, Cvoid, (Ptr{UInt8}, Ptr{UInt8}, Csize_t, Csize_t),
str1, str2, sizeof(str1), sizeof(str2))
Warning
Fortran compilers may also add other hidden arguments for pointers, assumed-shape (:
) and assumed-size (*
) arrays. Such behaviour can be avoided by using ISO_C_BINDING
and including bind(c)
in the definition of the subroutine, which is strongly recommended for interoperable code. In this case there will be no hidden arguments, at the cost of some language features (e.g. only character(len=1)
will be permitted to pass strings).
Note
A C function declared to return Cvoid
will return the value nothing
in Julia.
Struct Type Correspondences
Composite types, aka struct
in C or TYPE
in Fortran90 (or STRUCTURE
/ RECORD
in some variants of F77), can be mirrored in Julia by creating a struct
definition with the same field layout.
When used recursively, isbits
types are stored inline. All other types are stored as a pointer to the data. When mirroring a struct used by-value inside another struct in C, it is imperative that you do not attempt to manually copy the fields over, as this will not preserve the correct field alignment. Instead, declare an isbits
struct type and use that instead. Unnamed structs are not possible in the translation to Julia.
Packed structs and union declarations are not supported by Julia.
You can get an approximation of a union
if you know, a priori, the field that will have the greatest size (potentially including padding). When translating your fields to Julia, declare the Julia field to be only of that type.
Arrays of parameters can be expressed with NTuple
. For example, the struct in C notation written as
struct B {
int A[3];
};
b_a_2 = B.A[2];
can be written in Julia as
struct B
A::NTuple{3, Cint}
end
b_a_2 = B.A[3] # note the difference in indexing (1-based in Julia, 0-based in C)
Arrays of unknown size (C99-compliant variable length structs specified by []
or [0]
) are not directly supported. Often the best way to deal with these is to deal with the byte offsets directly. For example, if a C library declared a proper string type and returned a pointer to it:
struct String {
int strlen;
char data[];
};
In Julia, we can access the parts independently to make a copy of that string:
str = from_c::Ptr{Cvoid}
len = unsafe_load(Ptr{Cint}(str))
unsafe_string(str + Core.sizeof(Cint), len)
Type Parameters
The type arguments to ccall
and @cfunction
are evaluated statically, when the method containing the usage is defined. They therefore must take the form of a literal tuple, not a variable, and cannot reference local variables.
This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia, its functions can only accept argument types with a statically-known, fixed signature.
However, while the type layout must be known statically to compute the intended C ABI, the static parameters of the function are considered to be part of this static environment. The static parameters of the function may be used as type parameters in the call signature, as long as they don’t affect the layout of the type. For example, f(x::T) where {T} = ccall(:valid, Ptr{T}, (Ptr{T},), x)
is valid, since Ptr
is always a word-size primitive type. But, g(x::T) where {T} = ccall(:notvalid, T, (T,), x)
is not valid, since the type layout of T
is not known statically.
SIMD 值
Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.
If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type is a homogeneous tuple of VecElement
that naturally maps to the SIMD type. Specifically:
- The tuple must be the same size as the SIMD type. For example, a tuple representing an
__m128
on x86 must have a size of 16 bytes.- The element type of the tuple must be an instance of
VecElement{T}
whereT
is a primitive type that is 1, 2, 4 or 8 bytes.
For instance, consider this C routine that uses AVX intrinsics:
#include <immintrin.h>
__m256 dist( __m256 a, __m256 b ) {
return _mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(a, a),
_mm256_mul_ps(b, b)));
}
The following Julia code calls dist
using ccall
:
const m256 = NTuple{8, VecElement{Float32}}
a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))
b = m256(ntuple(i -> VecElement(cos(Float32(i))), 8))
function call_dist(a::m256, b::m256)
ccall((:dist, "libdist"), m256, (m256, m256), a, b)
end
println(call_dist(a,b))
The host machine must have the requisite SIMD registers. For example, the code above will not work on hosts without AVX support.
内存所有权
malloc/free
Memory allocation and deallocation of such objects must be handled by calls to the appropriate cleanup routines in the libraries being used, just like in any C program. Do not try to free an object received from a C library with Libc.free
in Julia, as this may result in the free
function being called via the wrong library and cause the process to abort. The reverse (passing an object allocated in Julia to be freed by an external library) is equally invalid.
何时使用 T、Ptr{T} 以及 Ref{T}
In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be of type T
inside the ccall
, as they are passed by value. For C code accepting pointers, Ref{T}
should generally be used for the types of input arguments, allowing the use of pointers to memory managed by either Julia or C through the implicit call to Base.cconvert
. In contrast, pointers returned by the C function called should be declared to be of output type Ptr{T}
, reflecting that the memory pointed to is managed by C only. Pointers contained in C structs should be represented as fields of type Ptr{T}
within the corresponding Julia struct types designed to mimic the internal structure of corresponding C structs.
In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type Ref{T}
, as Fortran passes all variables by pointers to memory locations. The return type should either be Cvoid
for Fortran subroutines, or a T
for Fortran functions returning the type T
.
Mapping C Functions to Julia
ccall / @cfunction argument translation guide
For translating a C argument list to Julia:
T
, whereT
is one of the primitive types:char
,int
,long
,short
,float
,double
,complex
,enum
or any of theirtypedef
equivalentsT
, whereT
is an equivalent Julia Bits Type (per the table above)- if
T
is anenum
, the argument type should be equivalent toCint
orCuint
- argument value will be copied (passed by value)
struct T
(including typedef to a struct)T
, whereT
is a Julia leaf type- argument value will be copied (passed by value)
void*
- depends on how this parameter is used, first translate this to the intended pointer type, then determine the Julia equivalent using the remaining rules in this list
- this argument may be declared as
Ptr{Cvoid}
, if it really is just an unknown pointer
jl_value_t*
Any
- argument value must be a valid Julia object
jl_value_t**
Ref{Any}
- argument value must be a valid Julia object (or
C_NULL
)
T*
Ref{T}
, whereT
is the Julia type corresponding toT
- argument value will be copied if it is an
isbits
type otherwise, the value must be a valid Julia object
T (*)(...)
(e.g. a pointer to a function)Ptr{Cvoid}
(you may need to use@cfunction
explicitly to create this pointer)
...
(e.g. a vararg)T...
, whereT
is the Julia type- currently unsupported by
@cfunction
va_arg
- not supported by
ccall
or@cfunction
- not supported by
ccall / @cfunction return type translation guide
For translating a C return type to Julia:
void
Cvoid
(this will return the singleton instancenothing::Cvoid
)
T
, whereT
is one of the primitive types:char
,int
,long
,short
,float
,double
,complex
,enum
or any of theirtypedef
equivalentsT
, whereT
is an equivalent Julia Bits Type (per the table above)- if
T
is anenum
, the argument type should be equivalent toCint
orCuint
- argument value will be copied (returned by-value)
struct T
(including typedef to a struct)T
, whereT
is a Julia Leaf Type- argument value will be copied (returned by-value)
void*
- depends on how this parameter is used, first translate this to the intended pointer type, then determine the Julia equivalent using the remaining rules in this list
- this argument may be declared as
Ptr{Cvoid}
, if it really is just an unknown pointer
jl_value_t*
Any
- argument value must be a valid Julia object
jl_value_t**
Ptr{Any}
(Ref{Any}
is invalid as a return type)- argument value must be a valid Julia object (or
C_NULL
)
T*
If the memory is already owned by Julia, or is an
isbits
type, and is known to be non-null:Ref{T}
, whereT
is the Julia type corresponding toT
- a return type of
Ref{Any}
is invalid, it should either beAny
(corresponding tojl_value_t*
) orPtr{Any}
(corresponding tojl_value_t**
) - C MUST NOT modify the memory returned via
Ref{T}
ifT
is anisbits
type
If the memory is owned by C:
Ptr{T}
, whereT
is the Julia type corresponding toT
T (*)(...)
(e.g. a pointer to a function)Ptr{Cvoid}
(you may need to use@cfunction
explicitly to create this pointer)
Passing Pointers for Modifying Inputs
Because C doesn’t support multiple return values, often C functions will take pointers to data that the function will modify. To accomplish this within a ccall
, you need to first encapsulate the value inside a Ref{T}
of the appropriate type. When you pass this Ref
object as an argument, Julia will automatically pass a C pointer to the encapsulated data:
width = Ref{Cint}(0)
range = Ref{Cfloat}(0)
ccall(:foo, Cvoid, (Ref{Cint}, Ref{Cfloat}), width, range)
Upon return, the contents of width
and range
can be retrieved (if they were changed by foo
) by width[]
and range[]
; that is, they act like zero-dimensional arrays.
C Wrapper Examples
Let’s start with a simple example of a C wrapper that returns a Ptr
type:
mutable struct gsl_permutation
end
# The corresponding C signature is
# gsl_permutation * gsl_permutation_alloc (size_t n);
function permutation_alloc(n::Integer)
output_ptr = ccall(
(:gsl_permutation_alloc, :libgsl), # name of C function and library
Ptr{gsl_permutation}, # output type
(Csize_t,), # tuple of input types
n # name of Julia variable to pass in
)
if output_ptr == C_NULL # Could not allocate memory
throw(OutOfMemoryError())
end
return output_ptr
end
The GNU Scientific Library (here assumed to be accessible through :libgsl
) defines an opaque pointer, gsl_permutation *
, as the return type of the C function gsl_permutation_alloc
. As user code never has to look inside the gsl_permutation
struct, the corresponding Julia wrapper simply needs a new type declaration, gsl_permutation
, that has no internal fields and whose sole purpose is to be placed in the type parameter of a Ptr
type. The return type of the ccall
is declared as Ptr{gsl_permutation}
, since the memory allocated and pointed to by output_ptr
is controlled by C.
The input n
is passed by value, and so the function’s input signature is simply declared as (Csize_t,)
without any Ref
or Ptr
necessary. (If the wrapper was calling a Fortran function instead, the corresponding function input signature would instead be (Ref{Csize_t},)
, since Fortran variables are passed by pointers.) Furthermore, n
can be any type that is convertible to a Csize_t
integer; the ccall
implicitly calls Base.cconvert(Csize_t, n)
.
Here is a second example wrapping the corresponding destructor:
# The corresponding C signature is
# void gsl_permutation_free (gsl_permutation * p);
function permutation_free(p::Ref{gsl_permutation})
ccall(
(:gsl_permutation_free, :libgsl), # name of C function and library
Cvoid, # output type
(Ref{gsl_permutation},), # tuple of input types
p # name of Julia variable to pass in
)
end
Here, the input p
is declared to be of type Ref{gsl_permutation}
, meaning that the memory that p
points to may be managed by Julia or by C. A pointer to memory allocated by C should be of type Ptr{gsl_permutation}
, but it is convertible using Base.cconvert
and therefore
Now if you look closely enough at this example, you may notice that it is incorrect, given our explanation above of preferred declaration types. Do you see it? The function we are calling is going to free the memory. This type of operation cannot be given a Julia object (it will crash or cause memory corruption). Therefore, it may be preferable to declare the p
type as Ptr{gsl_permutation }
, to make it harder for the user to mistakenly pass another sort of object there than one obtained via gsl_permutation_alloc
.
If the C wrapper never expects the user to pass pointers to memory managed by Julia, then using p::Ptr{gsl_permutation}
for the method signature of the wrapper and similarly in the ccall
is also acceptable.
Here is a third example passing Julia arrays:
# The corresponding C signature is
# int gsl_sf_bessel_Jn_array (int nmin, int nmax, double x,
# double result_array[])
function sf_bessel_Jn_array(nmin::Integer, nmax::Integer, x::Real)
if nmax < nmin
throw(DomainError())
end
result_array = Vector{Cdouble}(undef, nmax - nmin + 1)
errorcode = ccall(
(:gsl_sf_bessel_Jn_array, :libgsl), # name of C function and library
Cint, # output type
(Cint, Cint, Cdouble, Ref{Cdouble}),# tuple of input types
nmin, nmax, x, result_array # names of Julia variables to pass in
)
if errorcode != 0
error("GSL error code $errorcode")
end
return result_array
end
The C function wrapped returns an integer error code; the results of the actual evaluation of the Bessel J function populate the Julia array result_array
. This variable is declared as a Ref{Cdouble}
, since its memory is allocated and managed by Julia. The implicit call to Base.cconvert(Ref{Cdouble}, result_array)
unpacks the Julia pointer to a Julia array data structure into a form understandable by C.
Fortran Wrapper Example
The following example utilizes ccall to call a function in a common Fortran library (libBLAS) to computes a dot product. Notice that the argument mapping is a bit different here than above, as we need to map from Julia to Fortran. On every argument type, we specify Ref
or Ptr
. This mangling convention may be specific to your fortran compiler and operating system, and is likely undocumented. However, wrapping each in a Ref
(or Ptr
, where equivalent) is a frequent requirement of Fortran compiler implementations:
function compute_dot(DX::Vector{Float64}, DY::Vector{Float64})
@assert length(DX) == length(DY)
n = length(DX)
incx = incy = 1
product = ccall((:ddot_, "libLAPACK"),
Float64,
(Ref{Int32}, Ptr{Float64}, Ref{Int32}, Ptr{Float64}, Ref{Int32}),
n, DX, incx, DY, incy)
return product
end
垃圾回收安全
When passing data to a ccall
, it is best to avoid using the pointer
function. Instead define a convert method and pass the variables directly to the ccall
. ccall
automatically arranges that all of its arguments will be preserved from garbage collection until the call returns. If a C API will store a reference to memory allocated by Julia, after the ccall
returns, you must arrange that the object remains visible to the garbage collector. The suggested way to handle this is to make a global variable of type Array{Ref,1}
to hold these values, until the C library notifies you that it is finished with them.
Whenever you have created a pointer to Julia data, you must ensure the original data exists until you are done with using the pointer. Many methods in Julia such as unsafe_load
and String
make copies of data instead of taking ownership of the buffer, so that it is safe to free (or alter) the original data without affecting Julia. A notable exception is unsafe_wrap
which, for performance reasons, shares (or can be told to take ownership of) the underlying buffer.
The garbage collector does not guarantee any order of finalization. That is, if a
contained a reference to b
and both a
and b
are due for garbage collection, there is no guarantee that b
would be finalized after a
. If proper finalization of a
depends on b
being valid, it must be handled in other ways.
Non-constant Function Specifications
A (name, library)
function specification must be a constant expression. However, it is possible to use computed values as function names by staging through eval
as follows:
@eval ccall(($(string("a", "b")), "lib"), ...
This expression constructs a name using string
, then substitutes this name into a new ccall
expression, which is then evaluated. Keep in mind that eval
only operates at the top level, so within this expression local variables will not be available (unless their values are substituted with $
). For this reason, eval
is typically only used to form top-level definitions, for example when wrapping libraries that contain many similar functions. A similar example can be constructed for @cfunction
.
However, doing this will also be very slow and leak memory, so you should usually avoid this and instead keep reading. The next section discusses how to use indirect calls to efficiently accomplish a similar effect.
非直接调用
The first argument to ccall
can also be an expression evaluated at run time. In this case, the expression must evaluate to a Ptr
, which will be used as the address of the native function to call. This behavior occurs when the first ccall
argument contains references to non-constants, such as local variables, function arguments, or non-constant globals.
For example, you might look up the function via dlsym
, then cache it in a shared reference for that session. For example:
macro dlsym(func, lib)
z = Ref{Ptr{Cvoid}}(C_NULL)
quote
let zlocal = $z[]
if zlocal == C_NULL
zlocal = dlsym($(esc(lib))::Ptr{Cvoid}, $(esc(func)))::Ptr{Cvoid}
$z[] = $zlocal
end
zlocal
end
end
end
mylibvar = Libdl.dlopen("mylib")
ccall(@dlsym("myfunc", mylibvar), Cvoid, ())
Closure cfunctions
The first argument to @cfunction
can be marked with a $
, in which case the return value will instead be a struct CFunction
which closes over the argument. You must ensure that this return object is kept alive until all uses of it are done. The contents and code at the cfunction pointer will be erased via a finalizer
when this reference is dropped and atexit. This is not usually needed, since this functionality is not present in C, but can be useful for dealing with ill-designed APIs which don’t provide a separate closure environment parameter.
function qsort(a::Vector{T}, cmp) where T
isbits(T) || throw(ArgumentError("this method can only qsort isbits arrays"))
callback = @cfunction $cmp Cint (Ref{T}, Ref{T})
# Here, `callback` isa Base.CFunction, which will be converted to Ptr{Cvoid}
# (and protected against finalization) by the ccall
ccall(:qsort, Cvoid, (Ptr{T}, Csize_t, Csize_t, Ptr{Cvoid}),
a, length(a), Base.elsize(a), callback)
# We could instead use:
# GC.@preserve callback begin
# use(Base.unsafe_convert(Ptr{Cvoid}, callback))
# end
# if we needed to use it outside of a `ccall`
return a
end
Note
Closure @cfunction
rely on LLVM trampolines, which are not available on all platforms (for example ARM and PowerPC).
关闭库
It is sometimes useful to close (unload) a library so that it can be reloaded. For instance, when developing C code for use with Julia, one may need to compile, call the C code from Julia, then close the library, make an edit, recompile, and load in the new changes. One can either restart Julia or use the Libdl
functions to manage the library explicitly, such as:
lib = Libdl.dlopen("./my_lib.so") # Open the library explicitly.
sym = Libdl.dlsym(lib, :my_fcn) # Get a symbol for the function to call.
ccall(sym, ...) # Use the pointer `sym` instead of the (symbol, library) tuple (remaining arguments are the
same). Libdl.dlclose(lib) # Close the library explicitly.
Note that when using ccall
with the tuple input (e.g., ccall((:my_fcn, "./my_lib.so"), ...)
), the library is opened implicitly and it may not be explicitly closed.
调用规约
The second argument to ccall
can optionally be a calling convention specifier (immediately preceding return type). Without any specifier, the platform-default C calling convention is used. Other supported conventions are: stdcall
, cdecl
, fastcall
, and thiscall
(no-op on 64-bit Windows). For example (from base/libc.jl
) we see the same gethostname
ccall
as above, but with the correct signature for Windows:
hn = Vector{UInt8}(undef, 256)
err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))
请参阅 LLVM Language Reference 来获得更多信息。
There is one additional special calling convention llvmcall
, which allows inserting calls to LLVM intrinsics directly. This can be especially useful when targeting unusual platforms such as GPGPUs. For example, for CUDA, we need to be able to read the thread index:
ccall("llvm.nvvm.read.ptx.sreg.tid.x", llvmcall, Int32, ())
As with any ccall
, it is essential to get the argument signature exactly correct. Also, note that there is no compatibility layer that ensures the intrinsic makes sense and works on the current target, unlike the equivalent Julia functions exposed by Core.Intrinsics
.
访问全局变量
Global variables exported by native libraries can be accessed by name using the cglobal
function. The arguments to cglobal
are a symbol specification identical to that used by ccall
, and a type describing the value stored in the variable:
julia> cglobal((:errno, :libc), Int32)
Ptr{Int32} @0x00007f418d0816b8
The result is a pointer giving the address of the value. The value can be manipulated through this pointer using unsafe_load
and unsafe_store!
.
Note
This errno
symbol may not be found in a library named “libc”, as this is an implementation detail of your system compiler. Typically standard library symbols should be accessed just by name, allowing the compiler to fill in the correct one. Also, however, the errno
symbol shown in this example is special in most compilers, and so the value seen here is probably not what you expect or want. Compiling the equivalent code in C on any multi-threaded-capable system would typically actually call a different function (via macro preprocessor overloading), and may give a different result than the legacy value printed here.
Accessing Data through a Pointer
The following methods are described as “unsafe” because a bad pointer or type declaration can cause Julia to terminate abruptly.
Given a Ptr{T}
, the contents of type T
can generally be copied from the referenced memory into a Julia object using unsafe_load(ptr, [index])
. The index argument is optional (default is 1), and follows the Julia-convention of 1-based indexing. This function is intentionally similar to the behavior of getindex
and setindex!
(e.g. []
access syntax).
The return value will be a new object initialized to contain a copy of the contents of the referenced memory. The referenced memory can safely be freed or released.
If T
is Any
, then the memory is assumed to contain a reference to a Julia object (a jl_value_t*
), the result will be a reference to this object, and the object will not be copied. You must be careful in this case to ensure that the object was always visible to the garbage collector (pointers do not count, but the new reference does) to ensure the memory is not prematurely freed. Note that if the object was not originally allocated by Julia, the new object will never be finalized by Julia’s garbage collector. If the Ptr
itself is actually a jl_value_t*
, it can be converted back to a Julia object reference by unsafe_pointer_to_objref(ptr)
. (Julia values v
can be converted to jl_value_t*
pointers, as Ptr{Cvoid}
, by calling pointer_from_objref(v)
.)
The reverse operation (writing data to a Ptr{T}
), can be performed using unsafe_store!(ptr, value, [index])
. Currently, this is only supported for primitive types or other pointer-free (isbits
) immutable struct types.
Any operation that throws an error is probably currently unimplemented and should be posted as a bug so that it can be resolved.
If the pointer of interest is a plain-data array (primitive type or immutable struct), the function unsafe_wrap(Array, ptr,dims, own = false)
may be more useful. The final parameter should be true if Julia should “take ownership” of the underlying buffer and call free(ptr)
when the returned Array
object is finalized. If the own
parameter is omitted or false, the caller must ensure the buffer remains in existence until all access is complete.
Arithmetic on the Ptr
type in Julia (e.g. using +
) does not behave the same as C’s pointer arithmetic. Adding an integer to a Ptr
in Julia always moves the pointer by some number of bytes, not elements. This way, the address values obtained from pointer arithmetic do not depend on the element types of pointers.
线程安全
Some C libraries execute their callbacks from a different thread, and since Julia isn’t thread-safe you’ll need to take some extra precautions. In particular, you’ll need to set up a two-layered system: the C callback should only schedule (via Julia’s event loop) the execution of your “real” callback. To do this, create an AsyncCondition
object and wait
on it:
cond = Base.AsyncCondition()
wait(cond)
传递给 C 的回调应该只通过 ccall
将 cond.handle
作为参数传递给 :uv_async_send
并调用,注意避免任何内存分配操作或与 Julia 运行时的其他交互。
注意,事件可能会合并,因此对 uv_async_send
的多个调用可能会导致对该条件的单个唤醒通知。
关于 Callbacks 的更多内容
关于如何传递 callback 到 C 库的更多细节,请参考此博客。
C++
如需要直接易用的C++接口,即直接用Julia写封装代码,请参考 Cxx。如需封装C++库的工具,即用C++写封装/胶水代码,请参考CxxWrap。
- 1Non-library function calls in both C and Julia can be inlined and thus may have even less overhead than calls to shared library functions. The point above is that the cost of actually doing foreign function call is about the same as doing a call in either native language.
- 2The Clang package can be used to auto-generate Julia code from a C header file.