Document
Document
is the basic data type in Jina. Whether you’re working with text, image, video, audio, or 3D meshes, they are all Document
s in Jina.
Construct
Empty document
from jina import Document
d = Document()
From attributes
from jina import Document
import numpy
d1 = Document(text='hello')
d2 = Document(buffer=b'\f1')
d3 = Document(blob=numpy.array([1, 2, 3]))
d4 = Document(uri='https://jina.ai',
mime_type='text/plain',
granularity=1,
adjacency=3,
tags={'foo': 'bar'})
<jina.types.document.Document ('id', 'mime_type', 'text') at 4483297360>
<jina.types.document.Document ('id', 'buffer') at 5710817424>
<jina.types.document.Document ('id', 'blob') at 4483299536>
<jina.types.document.Document id=e01a53bc-aedb-11eb-88e6-1e008a366d48 uri=https://jina.ai mimeType=text/plain tags={'foo': 'bar'} granularity=1 adjacency=3 at 6317309200>
From another Document
from jina import Document
d = Document(content='hello, world!')
d1 = d
assert id(d) == id(d1) # True
To make a deep copy, use copy=True
:
d1 = Document(d, copy=True)
assert id(d) == id(d1) # False
From dict or JSON string
from jina import Document
import json
d = {'id': 'hello123', 'content': 'world'}
d1 = Document(d)
d = json.dumps({'id': 'hello123', 'content': 'world'})
d2 = Document(d)
Parsing unrecognized fields
Unrecognized fields in a dict
/JSON string are automatically put into the Document’s .tags
field:
from jina import Document
d1 = Document({'id': 'hello123', 'foo': 'bar'})
<jina.types.document.Document id=hello123 tags={'foo': 'bar'} at 6320791056>
You can use field_resolver
to map external field names to Document
attributes:
from jina import Document
d1 = Document({'id': 'hello123', 'foo': 'bar'}, field_resolver={'foo': 'content'})
<jina.types.document.Document id=hello123 mimeType=text/plain text=bar at 6246985488>
Set/unset attributes
Set
Set an attribute as you would with any Python object:
from jina import Document
d = Document()
d.text = 'hello world'
<jina.types.document.Document id=9badabb6-b9e9-11eb-993c-1e008a366d49 mime_type=text/plain text=hello world at 4444621648>
Unset
d.text = None
or
d.pop('text')
<jina.types.document.Document id=cdf1dea8-b9e9-11eb-8fd8-1e008a366d49 mime_type=text/plain at 4490447504>
Unset multiple attributes
d.pop('text', 'id', 'mime_type')
<jina.types.document.Document at 5668344144>
Content
text
, blob
, and buffer
are the three content attributes of a Document. They correspond to string-like data (e.g. for natural language), ndarray
-like data (e.g. for image/audio/video data), and binary data for general purpose, respectively. Each Document can contain only one type of content.
Attribute | Accept type | Use case |
---|---|---|
doc.text | Python string | Contain text |
doc.blob | A Python (nested) list/tuple of numbers, Numpy ndarray , SciPy sparse matrix (spmatrix ), TensorFlow dense & sparse tensor, PyTorch dense & sparse tensor, PaddlePaddle dense tensor | Contain image/video/audio |
doc.buffer | Binary string | Contain intermediate IO buffer |
Exclusivity of the content
Note that one Document
can only contain one type of content
: either text
, buffer
, or blob
. If you set one, the others will be cleared.
import numpy as np
d = Document(text='hello')
d.blob = np.array([1])
d.text # <- now it's empty
Why a Document contains only data type
What if you want to represent more than one kind of information? Say, to fully represent a PDF page you need to store both image and text. In this case, you can use nested Documents by putting image into one sub-Document, and text into another.
d = Document(chunks=[Document(blob=...), Document(text=...)])
The principle is each Document contains only one modality. This makes the whole logic clearer.
Tip
There is also a doc.content
sugar getter/setter of the above non-empty field. The content will be automatically grabbed or assigned to either text
, buffer
, or blob
field based on the given type.
Load content from URI
Often, you need to load data from a URI instead of assigning them directly in your code, uri
is the attribute you must learn.
After setting .uri
, you can load data into .text
/.buffer
/.blob
as follows.
The value of .uri
can point to either local URI, remote URI or data URI.
Local image URI
from jina import Document
d1 = Document(uri='apple.png').load_uri_to_image_blob()
print(d1.content_type, d1.content)
blob [[[255 255 255]
[255 255 255]
[255 255 255]
...
Remote text URI
from jina import Document
d1 = Document(uri='https://www.gutenberg.org/files/1342/1342-0.txt').load_uri_to_text()
print(d1.content_type, d1.content)
text The Project Gutenberg eBook of Pride and Prejudice, by Jane Austen
This eBook is for the use of anyone anywhere in the United States and
most other parts of the wor
Inline data URI
from jina import Document
d1 = Document(uri='''
AAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/w38GIAXDIBKE0DHxgljNBAAO
9TXL0Y4OHwAAAABJRU5ErkJggg==
''').load_uri_to_image_blob()
print(d1.content_type, d1.content)
blob [[[255 255 255]
[255 0 0]
[255 0 0]
[255 0 0]
[255 255 255]]
...
There are more .load_uri_to_*
functions that allow you to read text, image, video, 3D mesh, audio and tabular data into Jina.
Write to data URI
Inline data URI is helpful when you need a quick visualization in HTML, as it embeds all resources directly into that HTML.
You can convert a URI to a data URI using doc.load_uri_to_datauri()
. This will fetch the resource and make it inline.
Embedding
Embedding is a multi-dimensional representation of a Document
(often a [1, D]
vector). It serves as a very important piece in the neural search.
Document has an attribute embedding
to contain the embedding information.
Like .blob
, you can assign it with a Python (nested) List/Tuple, Numpy ndarray
, SciPy sparse matrix (spmatrix
), TensorFlow dense and sparse tensor, PyTorch dense and sparse tensor, or PaddlePaddle dense tensor.
import numpy as np
import scipy.sparse as sp
import torch
import tensorflow as tf
from jina import Document
d0 = Document(embedding=[1, 2, 3])
d1 = Document(embedding=np.array([1, 2, 3]))
d2 = Document(embedding=np.array([[1, 2, 3], [4, 5, 6]]))
d3 = Document(embedding=sp.coo_matrix([0, 0, 0, 1, 0]))
d4 = Document(embedding=torch.tensor([1, 2, 3]))
d5 = Document(embedding=tf.sparse.from_dense(np.array([[1, 2, 3], [4, 5, 6]])))
Fill embedding from DNN model
On multiple Documents
This is a syntax sugar on single Document, which leverages embed()
underneath. To embed multiple Documents, do not use this feature in a for-loop. Instead, read more details in Embed via model.
Once a Document
has .blob
set, you can use a deep neural network to embed()
it, which means filling Document.embedding
. For example, our Document
looks like the following:
q = (Document(uri='/Users/hanxiao/Downloads/left/00003.jpg')
.load_uri_to_image_blob()
.set_image_blob_normalization()
.set_image_blob_channel_axis(-1, 0))
Let’s embed it into vector via ResNet:
import torchvision
model = torchvision.models.resnet50(pretrained=True)
q.embed(model)
Find nearest-neighbours
On multiple Documents
This is a syntax sugar on single Document, which leverages match()
underneath. To match multiple Documents, do not use this feature in a for-loop. Instead, find out more in Find nearest neighbours.
Once a Document has .embedding
filled, it can be “matched”. In this example, we build ten Documents and put them into a DocumentArray, and then use another Document to search against them.
from jina import DocumentArray, Document
import numpy as np
da = DocumentArray.empty(10)
da.embeddings = np.random.random([10, 256])
q = Document(embedding=np.random.random([256]))
q.match(da)
print(q.matches[0])
<jina.types.document.Document ('id', 'embedding', 'adjacency', 'scores') at 8256118608>
Nested Documents
Document
can be nested both horizontally and vertically. The following graphic illustrates the recursive Document
structure. Each Document
can have multiple “chunks” and “matches”, which are Document
as well.
Attribute | Description |
---|---|
doc.chunks | The list of sub-Documents of this Document. They have granularity + 1 but same adjacency |
doc.matches | The list of matched Documents of this Document. They have adjacency + 1 but same granularity |
doc.granularity | The recursion “depth” of the recursive chunks structure |
doc.adjacency | The recursion “width” of the recursive match structure |
You can add chunks (sub-Document) and matches (neighbour-Document) to a Document
:
Add in constructor:
d = Document(chunks=[Document(), Document()], matches=[Document(), Document()])
Add to existing
Document
:d = Document()
d.chunks = [Document(), Document()]
d.matches = [Document(), Document()]
Add to existing
doc.chunks
ordoc.matches
:d = Document()
d.chunks.append(Document())
d.matches.append(Document())
Note
Both doc.chunks
and doc.matches
return ChunkArray
and MatchArray
, which are sub-classes of DocumentArray. We will introduce DocumentArray
later.
Caveat: order matters
When adding sub-Documents to Document.chunks
, avoid creating them in one line, otherwise the recursive Document structure will not be correct. This is because chunks
use ref_doc
to control their granularity
. At chunk
creation time the chunk
doesn’t know anything about its parent, and will get a wrong granularity
value.
✅ Do
from jina import Document
root_document = Document(text='i am root')
# add one chunk to root
root_document.chunks.append(Document(text='i am chunk 1'))
root_document.chunks.extend([
Document(text='i am chunk 2'),
Document(text='i am chunk 3'),
]) # add multiple chunks to root
😔 Don’t
from jina import Document
root_document = Document(
text='i am root',
chunks=[
Document(text='i am chunk 2'),
Document(text='i am chunk 3'),
]
)
Tags
Document
contains the tags
attribute that can hold a map-like structure that can map arbitrary values. In practice, you can store meta information in tags
.
from jina import Document
doc = Document(tags={'dimensions': {'height': 5.0, 'weight': 10.0, 'last_modified': 'Monday'}})
doc.tags['dimensions']
{'weight': 10.0, 'height': 5.0, 'last_modified': 'Monday'}
To provide easy access to nested fields, the Document
allows you to access attributes by composing the attribute qualified name with interlaced __
symbols:
from jina import Document
doc = Document(tags={'dimensions': {'height': 5.0, 'weight': 10.0}})
doc.tags__dimensions__weight
10.0
This also allows the access of nested metadata attributes in bulk
from a DocumentArray
.
from jina import Document, DocumentArray
da = DocumentArray([Document(tags={'dimensions': {'height': 5.0, 'weight': 10.0}}) for _ in range(10)])
da.get_attributes('tags__dimensions__height', 'tags__dimensions__weight')
[[5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]]
Note
As tags
does not have a fixed schema, it is declared with type google.protobuf.Struct
in the DocumentProto
protobuf declaration. However, google.protobuf.Struct
follows the JSON specification and does not differentiate int
from float
. So, data of type int
in tags
will be always casted to float
when a request is sent to an Executor.
As a result, users need be explicit and cast the data to the expected type as follows:
✅ Do
class MyIndexer(Executor):
animals = ['cat', 'dog', 'turtle']
@requests
def foo(self, docs, parameters: dict, **kwargs):
for doc in docs:
# need to cast to int since list indices must be integers not float
index = int(doc.tags['index'])
assert self.animals[index] == 'dog'
with Flow().add(uses=MyExecutor) as f:
f.post(on='/endpoint',
inputs=DocumentArray([]), parameters={'index': 1})
😔 Don’t
class MyIndexer(Executor):
animals = ['cat', 'dog', 'turtle']
@requests
def foo(self, docs, parameters: dict, **kwargs):
for doc in docs:
# ERROR: list indices must be integer not float
index = doc.tags['index']
assert self.animals[index] == 'dog'
with Flow().add(uses=MyExecutor) as f:
f.post(on='/endpoint',
inputs=DocumentArray([]), parameters={'index': 1})
Serialization
You can serialize a Document
into JSON string via to_json() or Python dict via to_dict() or binary string via to_bytes():
JSON
from jina import Document
Document(content='hello, world', embedding=[1, 2, 3]).to_json()
{
"embedding": [
1,
2,
3
],
"id": "9e36927e576b11ec81971e008a366d48",
"mime_type": "text/plain",
"text": "hello, world"
}
Binary
from jina import Document
bytes(Document(content='hello, world', embedding=[1, 2, 3]))
b'\n aad94436576b11ec81551e008a366d48R\ntext/plainj\x0chello, world\x9a\x01+\n"\n\x18\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x12\x01\x03\x1a\x03<i8\x1a\x05numpy'
Dict
from jina import Document
Document(content='hello, world', embedding=[1, 2, 3]).to_dict()
{'id': 'c742f7f2576b11ec89aa1e008a366d48', 'mime_type': 'text/plain', 'text': 'hello, world', 'embedding': [1, 2, 3]}
Visualization
To better see the Document’s recursive structure, you can use plot()
function. If you are using JupyterLab/Notebook, all Document
objects will be auto-rendered:
import numpy as np
from jina import Document
d0 = Document(id='🐲', embedding=np.array([0, 0]))
d1 = Document(id='🐦', embedding=np.array([1, 0]))
d2 = Document(id='🐢', embedding=np.array([0, 1]))
d3 = Document(id='🐯', embedding=np.array([1, 1]))
d0.chunks.append(d1)
d0.chunks[0].chunks.append(d2)
d0.matches.append(d3)
d0.plot() # simply `d0` on JupyterLab