jina.helloworld.fashion.my_executors module

class jina.helloworld.fashion.my_executors.MyIndexer(\*kwargs*)[source]

Bases: jina.serve.executors.BaseExecutor

Executor with basic exact search using cosine distance

metas and requests are always auto-filled with values from YAML config.

  • Parameters

    • metas – a dict of metas fields

    • requests – a dict of endpoint-function mapping

    • runtime_args – a dict of arguments injected from Runtime during runtime

    • kwargs – additional extra keyword arguments to avoid failing when extra params ara passed that are not expected

  • index(docs, \*kwargs*)[source]

    Extend self._docs

    • Parameters

      • docs (DocumentArray) – DocumentArray containing Documents

      • kwargs – other keyword arguments

  • search(docs, parameters, \*kwargs*)[source]

    Append best matches to each document in docs

    • Parameters

      • docs (DocumentArray) – documents that are searched

      • parameters (Dict) – dictionary of pairs (parameter,value)

      • kwargs – other keyword arguments

  • close()[source]

    Stores the DocumentArray to disk

  • requests = {‘/eval’: <function MyIndexer.search>, ‘/index’: <function MyIndexer.index>, ‘/search’: <function MyIndexer.search>}

class jina.helloworld.fashion.my_executors.MyEncoder(\*kwargs*)[source]

Bases: jina.serve.executors.BaseExecutor

Encode data using SVD decomposition

metas and requests are always auto-filled with values from YAML config.

  • Parameters

    • metas – a dict of metas fields

    • requests – a dict of endpoint-function mapping

    • runtime_args – a dict of arguments injected from Runtime during runtime

    • kwargs – additional extra keyword arguments to avoid failing when extra params ara passed that are not expected

  • encode(docs, \*kwargs*)[source]

    Encode the data using an SVD decomposition

    • Parameters

      • docs (DocumentArray) – input documents to update with an embedding

      • kwargs – other keyword arguments

  • requests = {‘/default’: <function MyEncoder.encode>}

class jina.helloworld.fashion.my_executors.MyConverter(metas=None, requests=None, runtime_args=None, \*kwargs*)[source]

Bases: jina.serve.executors.BaseExecutor

Convert DocumentArrays removing tensor and reshaping tensor as image

metas and requests are always auto-filled with values from YAML config.

  • Parameters

    • metas (Optional[Dict]) – a dict of metas fields

    • requests (Optional[Dict]) – a dict of endpoint-function mapping

    • runtime_args (Optional[Dict]) – a dict of arguments injected from Runtime during runtime

    • kwargs – additional extra keyword arguments to avoid failing when extra params ara passed that are not expected

  • convert(docs, \*kwargs*)[source]

    Remove tensor and reshape documents as squared images :type docs: DocumentArray :param docs: documents to modify :param kwargs: other keyword arguments

  • requests = {‘/default’: <function MyConverter.convert>}