Spark-IoTDB User Guide
Supported Versions
Supported versions of Spark and Scala are as follows:
Spark Version | Scala Version |
---|---|
2.4.0-latest | 2.11, 2.12 |
Precautions
- The current version of
spark-iotdb-connector
supports Scala2.11
and2.12
, but not2.13
. spark-iotdb-connector
supports usage in Spark for both Java, Scala, and PySpark.
Deployment
spark-iotdb-connector
has two use cases: IDE development and spark-shell
debugging.
IDE Development
For IDE development, simply add the following dependency to the pom.xml
file:
<dependency>
<groupId>org.apache.iotdb</groupId>
<!-- spark-iotdb-connector_2.11 or spark-iotdb-connector_2.13 -->
<artifactId>spark-iotdb-connector_2.12.10</artifactId>
<version>${iotdb.version}</version>
</dependency>
spark-shell
Debugging
To use spark-iotdb-connector
in spark-shell
, you need to download the with-dependencies
version of the jar package
from the official website. After that, copy the jar package to the ${SPARK_HOME}/jars
directory.
Simply execute the following command:
cp spark-iotdb-connector_2.12.10-${iotdb.version}.jar $SPARK_HOME/jars/
Usage
Parameters
Parameter | Description | Default Value | Scope | Can be Empty |
---|---|---|---|---|
url | Specifies the JDBC URL of IoTDB | null | read, write | false |
user | The username of IoTDB | root | read, write | true |
password | The password of IoTDB | root | read, write | true |
sql | Specifies the SQL statement for querying | null | read | true |
numPartition | Specifies the partition number of the DataFrame when in read, and the write concurrency number when in write | 1 | read, write | true |
lowerBound | The start timestamp of the query (inclusive) | 0 | read | true |
upperBound | The end timestamp of the query (inclusive) | 0 | read | true |
Reading Data from IoTDB
Here is an example that demonstrates how to read data from IoTDB into a DataFrame:
import org.apache.iotdb.spark.db._
val df = spark.read.format("org.apache.iotdb.spark.db")
.option("user", "root")
.option("password", "root")
.option("url", "jdbc:iotdb://127.0.0.1:6667/")
.option("sql", "select ** from root") // query SQL
.option("lowerBound", "0") // lower timestamp bound
.option("upperBound", "100000000") // upper timestamp bound
.option("numPartition", "5") // number of partitions
.load
df.printSchema()
df.show()
Writing Data to IoTDB
Here is an example that demonstrates how to write data to IoTDB:
// Construct narrow table data
val df = spark.createDataFrame(List(
(1L, "root.test.d0", 1, 1L, 1.0F, 1.0D, true, "hello"),
(2L, "root.test.d0", 2, 2L, 2.0F, 2.0D, false, "world")))
val dfWithColumn = df.withColumnRenamed("_1", "Time")
.withColumnRenamed("_2", "Device")
.withColumnRenamed("_3", "s0")
.withColumnRenamed("_4", "s1")
.withColumnRenamed("_5", "s2")
.withColumnRenamed("_6", "s3")
.withColumnRenamed("_7", "s4")
.withColumnRenamed("_8", "s5")
// Write narrow table data
dfWithColumn
.write
.format("org.apache.iotdb.spark.db")
.option("url", "jdbc:iotdb://127.0.0.1:6667/")
.save
// Construct wide table data
val df = spark.createDataFrame(List(
(1L, 1, 1L, 1.0F, 1.0D, true, "hello"),
(2L, 2, 2L, 2.0F, 2.0D, false, "world")))
val dfWithColumn = df.withColumnRenamed("_1", "Time")
.withColumnRenamed("_2", "root.test.d0.s0")
.withColumnRenamed("_3", "root.test.d0.s1")
.withColumnRenamed("_4", "root.test.d0.s2")
.withColumnRenamed("_5", "root.test.d0.s3")
.withColumnRenamed("_6", "root.test.d0.s4")
.withColumnRenamed("_7", "root.test.d0.s5")
// Write wide table data
dfWithColumn.write.format("org.apache.iotdb.spark.db")
.option("url", "jdbc:iotdb://127.0.0.1:6667/")
.option("numPartition", "10")
.save
Wide and Narrow Table Conversion
Here are examples of how to convert between wide and narrow tables:
- From wide to narrow
import org.apache.iotdb.spark.db._
val wide_df = spark.read.format("org.apache.iotdb.spark.db").option("url", "jdbc:iotdb://127.0.0.1:6667/").option("sql", "select * from root.** where time < 1100 and time > 1000").load
val narrow_df = Transformer.toNarrowForm(spark, wide_df)
- From narrow to wide
import org.apache.iotdb.spark.db._
val wide_df = Transformer.toWideForm(spark, narrow_df)
Wide and Narrow Tables
Using the TsFile structure as an example: there are three measurements in the TsFile pattern,
namely Status
, Temperature
, and Hardware
. The basic information for each of these three measurements is as
follows:
Name | Type | Encoding |
---|---|---|
Status | Boolean | PLAIN |
Temperature | Float | RLE |
Hardware | Text | PLAIN |
The existing data in the TsFile is as follows:
d1:root.ln.wf01.wt01
d2:root.ln.wf02.wt02
time | d1.status | time | d1.temperature | time | d2.hardware | time | d2.status |
---|---|---|---|---|---|---|---|
1 | True | 1 | 2.2 | 2 | “aaa” | 1 | True |
3 | True | 2 | 2.2 | 4 | “bbb” | 2 | False |
5 | False | 3 | 2.1 | 6 | “ccc” | 4 | True |
The wide (default) table form is as follows:
Time | root.ln.wf02.wt02.temperature | root.ln.wf02.wt02.status | root.ln.wf02.wt02.hardware | root.ln.wf01.wt01.temperature | root.ln.wf01.wt01.status | root.ln.wf01.wt01.hardware |
---|---|---|---|---|---|---|
1 | null | true | null | 2.2 | true | null |
2 | null | false | aaa | 2.2 | null | null |
3 | null | null | null | 2.1 | true | null |
4 | null | true | bbb | null | null | null |
5 | null | null | null | null | false | null |
6 | null | null | ccc | null | null | null |
You can also use the narrow table format as shown below:
Time | Device | status | hardware | temperature |
---|---|---|---|---|
1 | root.ln.wf02.wt01 | true | null | 2.2 |
1 | root.ln.wf02.wt02 | true | null | null |
2 | root.ln.wf02.wt01 | null | null | 2.2 |
2 | root.ln.wf02.wt02 | false | aaa | null |
3 | root.ln.wf02.wt01 | true | null | 2.1 |
4 | root.ln.wf02.wt02 | true | bbb | null |
5 | root.ln.wf02.wt01 | false | null | null |
6 | root.ln.wf02.wt02 | null | ccc | null |