缓存冻结层
由于冻结层不会改变,因此可以为每个训练实例缓存最上面的冻结层的输出。 由于训练贯穿整个数据集很多次,这将给你一个巨大的速度提升,因为每个训练实例只需要经过一次冻结层(而不是每个迭代一次)。 例如,你可以先运行整个训练集(假设你有足够的内存):
hidden2_outputs = sess.run(hidden2, feed_dict={X: X_train})
然后在训练过程中,不再对训练实例建立批次,而是从隐藏层2的输出建立批次,并将它们提供给训练操作:
最后一行运行先前定义的训练操作(冻结层 1 和 2),并从第二个隐藏层(以及该批次的目标)为其输出一批输出。 因为我们给 TensorFlow 隐藏层 2 的输出,所以它不会去评估它(或者它所依赖的任何节点)。