模型微调
假设你现在有了一个列表,列表里有几个有希望的模型。你现在需要对它们进行微调。让我们来看几种微调的方法。
网格搜索
微调的一种方法是手工调整超参数,直到找到一个好的超参数组合。这么做的话会非常冗长,你也可能没有时间探索多种组合。
你应该使用 Scikit-Learn 的GridSearchCV
来做这项搜索工作。你所需要做的是告诉GridSearchCV
要试验有哪些超参数,要试验什么值,GridSearchCV
就能用交叉验证试验所有可能超参数值的组合。例如,下面的代码搜索了RandomForestRegressor
超参数值的最佳组合:
from sklearn.model_selection import GridSearchCV
param_grid = [
{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
{'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]
forest_reg = RandomForestRegressor()
grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
scoring='neg_mean_squared_error')
grid_search.fit(housing_prepared, housing_labels)
当你不能确定超参数该有什么值,一个简单的方法是尝试连续的 10 的幂(如果想要一个粒度更小的搜寻,可以用更小的数,就像在这个例子中对超参数
n_estimators
做的)。
param_grid
告诉 Scikit-Learn 首先评估所有的列在第一个dict
中的n_estimators
和max_features
的3 × 4 = 12
种组合(不用担心这些超参数的含义,会在第 7 章中解释)。然后尝试第二个dict
中超参数的2 × 3 = 6
种组合,这次会将超参数bootstrap
设为False
而不是True
(后者是该超参数的默认值)。
总之,网格搜索会探索12 + 6 = 18
种RandomForestRegressor
的超参数组合,会训练每个模型五次(因为用的是五折交叉验证)。换句话说,训练总共有18 × 5 = 90
轮!K 折将要花费大量时间,完成后,你就能获得参数的最佳组合,如下所示:
>>> grid_search.best_params_
{'max_features': 6, 'n_estimators': 30}
提示:因为 30 是
n_estimators
的最大值,你也应该估计更高的值,因为评估的分数可能会随n_estimators
的增大而持续提升。
你还能直接得到最佳的估计器:
>>> grid_search.best_estimator_
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features=6, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=30, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)
注意:如果
GridSearchCV
是以(默认值)refit=True
开始运行的,则一旦用交叉验证找到了最佳的估计器,就会在整个训练集上重新训练。这是一个好方法,因为用更多数据训练会提高性能。
当然,也可以得到评估得分:
>>> cvres = grid_search.cv_results_
... for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
... print(np.sqrt(-mean_score), params)
...
64912.0351358 {'max_features': 2, 'n_estimators': 3}
55535.2786524 {'max_features': 2, 'n_estimators': 10}
52940.2696165 {'max_features': 2, 'n_estimators': 30}
60384.0908354 {'max_features': 4, 'n_estimators': 3}
52709.9199934 {'max_features': 4, 'n_estimators': 10}
50503.5985321 {'max_features': 4, 'n_estimators': 30}
59058.1153485 {'max_features': 6, 'n_estimators': 3}
52172.0292957 {'max_features': 6, 'n_estimators': 10}
49958.9555932 {'max_features': 6, 'n_estimators': 30}
59122.260006 {'max_features': 8, 'n_estimators': 3}
52441.5896087 {'max_features': 8, 'n_estimators': 10}
50041.4899416 {'max_features': 8, 'n_estimators': 30}
62371.1221202 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
54572.2557534 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
59634.0533132 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
52456.0883904 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
58825.665239 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
52012.9945396 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
在这个例子中,我们通过设定超参数max_features
为 6,n_estimators
为 30,得到了最佳方案。对这个组合,RMSE 的值是 49959,这比之前使用默认的超参数的值(52634)要稍微好一些。祝贺你,你成功地微调了最佳模型!
提示:不要忘记,你可以像超参数一样处理数据准备的步骤。例如,网格搜索可以自动判断是否添加一个你不确定的特征(比如,使用转换器
CombinedAttributesAdder
的超参数add_bedrooms_per_room
)。它还能用相似的方法来自动找到处理异常值、缺失特征、特征选择等任务的最佳方法。
随机搜索
当探索相对较少的组合时,就像前面的例子,网格搜索还可以。但是当超参数的搜索空间很大时,最好使用RandomizedSearchCV
。这个类的使用方法和类GridSearchCV
很相似,但它不是尝试所有可能的组合,而是通过选择每个超参数的一个随机值的特定数量的随机组合。这个方法有两个优点:
如果你让随机搜索运行,比如 1000 次,它会探索每个超参数的 1000 个不同的值(而不是像网格搜索那样,只搜索每个超参数的几个值)。
你可以方便地通过设定搜索次数,控制超参数搜索的计算量。
集成方法
另一种微调系统的方法是将表现最好的模型组合起来。组合(集成)之后的性能通常要比单独的模型要好(就像随机森林要比单独的决策树要好),特别是当单独模型的误差类型不同时。我们会在第7章更深入地讲解这点。
分析最佳模型和它们的误差
通过分析最佳模型,常常可以获得对问题更深的了解。比如,RandomForestRegressor
可以指出每个属性对于做出准确预测的相对重要性:
>>> feature_importances = grid_search.best_estimator_.feature_importances_
>>> feature_importances
array([ 7.14156423e-02, 6.76139189e-02, 4.44260894e-02,
1.66308583e-02, 1.66076861e-02, 1.82402545e-02,
1.63458761e-02, 3.26497987e-01, 6.04365775e-02,
1.13055290e-01, 7.79324766e-02, 1.12166442e-02,
1.53344918e-01, 8.41308969e-05, 2.68483884e-03,
3.46681181e-03])
将重要性分数和属性名放到一起:
>>> extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
>>> cat_one_hot_attribs = list(encoder.classes_)
>>> attributes = num_attribs + extra_attribs + cat_one_hot_attribs
>>> sorted(zip(feature_importances,attributes), reverse=True)
[(0.32649798665134971, 'median_income'),
(0.15334491760305854, 'INLAND'),
(0.11305529021187399, 'pop_per_hhold'),
(0.07793247662544775, 'bedrooms_per_room'),
(0.071415642259275158, 'longitude'),
(0.067613918945568688, 'latitude'),
(0.060436577499703222, 'rooms_per_hhold'),
(0.04442608939578685, 'housing_median_age'),
(0.018240254462909437, 'population'),
(0.01663085833886218, 'total_rooms'),
(0.016607686091288865, 'total_bedrooms'),
(0.016345876147580776, 'households'),
(0.011216644219017424, '<1H OCEAN'),
(0.0034668118081117387, 'NEAR OCEAN'),
(0.0026848388432755429, 'NEAR BAY'),
(8.4130896890070617e-05, 'ISLAND')]
有了这个信息,你就可以丢弃一些不那么重要的特征(比如,显然只要一个ocean_proximity
的类型(INLAND)就够了,所以可以丢弃掉其它的)。
你还应该看一下系统犯的误差,搞清为什么会有些误差,以及如何改正问题(添加更多的特征,或相反,去掉没有什么信息的特征,清洗异常值等等)。
用测试集评估系统
调节完系统之后,你终于有了一个性能足够好的系统。现在就可以用测试集评估最后的模型了。这个过程没有什么特殊的:从测试集得到预测值和标签,运行full_pipeline
转换数据(调用transform()
,而不是fit_transform()
!),再用测试集评估最终模型:
final_model = grid_search.best_estimator_
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)
final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse) # => evaluates to 48,209.6
评估结果通常要比交叉验证的效果差一点,如果你之前做过很多超参数微调(因为你的系统在验证集上微调,得到了不错的性能,通常不会在未知的数据集上有同样好的效果)。这个例子不属于这种情况,但是当发生这种情况时,你一定要忍住不要调节超参数,使测试集的效果变好;这样的提升不能推广到新数据上。
然后就是项目的预上线阶段:你需要展示你的方案(重点说明学到了什么、做了什么、没做什么、做过什么假设、系统的限制是什么,等等),记录下所有事情,用漂亮的图表和容易记住的表达(比如,“收入中位数是房价最重要的预测量”)做一次精彩的展示。