使用神经网络

现在神经网络被训练了,你可以用它进行预测。 为此,您可以重复使用相同的建模阶段,但是更改执行阶段,如下所示:

  1. with tf.Session() as sess:
  2. saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path
  3. X_new_scaled = mnist.test.images[:20]
  4. Z = logits.eval(feed_dict={X: X_new_scaled})
  5. y_pred = np.argmax(Z, axis=1)

首先,代码从磁盘加载模型参数。 然后加载一些您想要分类的新图像。 记住应用与训练数据相同的特征缩放(在这种情况下,将其从 0 缩放到 1)。 然后代码评估对数点节点。 如果您想知道所有估计的类概率,则需要将softmax()函数应用于对数,但如果您只想预测一个类,则可以简单地选择具有最高 logit 值的类(使用argmax()函数做的伎俩)。