Merge Sort
One of the fastest sorting algorithms. Used by general computing and machine learning.
- This is the most important sorting algorithm.
- Discovered by John von Neumann (1945).
- Uses the methodology divide and conquer.
Performance
Θ(nlgn)
Pseudo-code
Recursive algorithm composed of two stages:
- Split the array into halves. Θ(1)
- Merge the units in a sorted way. Θ$$(n)$$
The recursive part brings the lgn since the splitting creates a binary tree data structure which reduces by a power of two each increase of n.
My example code using recursion
/**
* sorts and merge two sub arrays.
* Written in a recursive functional programming.
* Free of side-effects.
*
* Concatenating arrays before returning,
* to use Proper Tail Call optimization.
*
* @param {array} sorted
* @param {array} subA
* @param {array} subB
* @result {array} final sorted array
*/
function merge (sorted, subA, subB ) {
if (!subA.length && !subB.length) {
return sorted;
}
if (!subA.length && subB.length) {
const newSorted = [...sorted, ...subB];
return newSorted;
}
if (subA.length && !subB.length) {
const newSorted2 = [...sorted, ...subA];
return newSorted2;
}
if (subA[0] <= subB[0]) {
const newSubA = subA.slice(1);
const newSorted3 = [ ...sorted, subA[0] ];
return merge(newSorted3, newSubA, subB);
}
const newSubB = subB.slice(1);
const newSorted4 = [ ...sorted, subB[0] ];
return merge(newSorted4, subA, newSubB);
}
function mergeSort (array) {
if (array.length <= 1) {
return array;
}
if (array.length === 2) {
const subA2 = [array[0]];
const subB2 = [array[1]];
const sorted = merge([], subA2, subB2);
return sorted;
}
const midIndex = Math.floor( (array.length) / 2 );
const subA = mergeSort( array.slice(0, midIndex) );
const subB = mergeSort( array.slice(midIndex) );
const sorted2 = merge([], subA, subB);
return sorted2;
}
// Unit tests
// Test1
const sorted = merge([], [3,5], [2,6]);
const should = [2,3,5,6];
console.log(`
Test merge():
${sorted.toString() === should.toString()}:
${sorted.toString()} should be ${should}
`);
// Test2
const sorted2 = merge([], [5,3], [2,6]);
const should2 = [2,3,5,6];
console.log(`
Test2 merge():
This should not sort correctly since the sub arrays arenot sorted.
${sorted2.toString() !== should2.toString()}:
${sorted2.toString()} should not be ${should2}
`);
// Test3
const array = [5,3,2,6];
const should3 = [2, 3, 5, 6];
const sorted3 = mergeSort(array);
console.log(`
Test3 mergeSort(${array.toString()}):
${sorted3.toString() === should3.toString()}:
${sorted3.toString()} should be ${should3}
`);
// Test4
const array2 = [-2,5,0,7];
const should4 = [-2, 0, 5, 7];
const sorted4 = mergeSort(array2);
console.log(`
Test4 mergeSort(${array2.toString()}):
Should handle negative numbers and 0's.
${sorted4.toString() === should4.toString()}:
${sorted4.toString()} should be ${should4}
`);
// Test5
const array3 = [1, 3, 4, 7];
const should5 = [1, 3, 4, 7];
const sorted5 = mergeSort(array3);
console.log(`
Test5 mergeSort(${array3.toString()}):
Should work with sorted arrays.
${sorted5.toString() === should5.toString()}:
${sorted5.toString()} should be ${should5}
`);
// Test6
const array4 = [ 1, 209, 8, 80, 3, 7, 0 ];
const should6 = [ 0, 1, 3, 7, 8, 80, 209 ];
const sorted6 = mergeSort(array4);
console.log(`
Test6 mergeSort(${array4.toString()}):
Should work with long and odd length arrays
${sorted6.toString() === should6.toString()}:
${sorted6.toString()} should be ${should6}
`);
// Display initial array in HTML
const initElement = document.querySelector('.init');
initElement.textContent = array.toString();
// Display sorted array in HTML
const resultElement = document.querySelector('.result');
const resultContent = mergeSort(array);
resultElement.textContent = resultContent.toString();
Example code from Khan Academy
// Takes in an array that has two sorted subarrays,
// from [p..q] and [q+1..r], and merges the array
var merge = function(array, p, q, r) {
var lowHalf = [];
var highHalf = [];
var k = p;
var i;
var j;
for (i = 0; k <= q; i++, k++) {
lowHalf[i] = array[k];
}
for (j = 0; k <= r; j++, k++) {
highHalf[j] = array[k];
}
k = p;
i = 0;
j = 0;
// Repeatedly compare the lowest untaken element in
// lowHalf with the lowest untaken element in highHalf
// and copy the lower of the two back into array
while (i < lowHalf.length && j < highHalf.length) {
if (lowHalf[i] < highHalf[j]) {
array[k] = lowHalf[i];
i++;
} else {
array[k] = highHalf[j];
j++;
}
k++;
}
// Once one of lowHalf and highHalf has been fully copied
// back into array, copy the remaining elements from the
// other temporary array back into the array
while (i < lowHalf.length) {
array[k] = lowHalf[i];
k++;
i++;
}
while (j < highHalf.length) {
array[k] = highHalf[j];
k++;
j++;
}
};
// Takes in an array and recursively merge sorts it
var mergeSort = function(array, p, r) {
if (r > p) {
var q = Math.floor((r - p) / 2 + p);
mergeSort(array, p, q);
mergeSort(array, q + 1, r);
merge(array, p, q, r);
}
};
var array = [14, 7, 3, 12, 9, 11, 6, 2];
mergeSort(array, 0, array.length-1);