《Go语言四十二章经》第二十三章 同步与锁
作者:李骁
23.1 同步锁
Go语言包中的sync包提供了两种锁类型:sync.Mutex和sync.RWMutex,前者是互斥锁,后者是读写锁。
互斥锁是传统的并发程序对共享资源进行访问控制的主要手段,在Go中,似乎更推崇由channel来实现资源共享和通信。它由标准库代码包sync中的Mutex结构体类型代表。只有两个公开方法:调用Lock()获得锁,调用unlock()释放锁。
使用Lock()加锁后,不能再继续对其加锁(同一个goroutine中,即:同步调用),否则会panic。只有在unlock()之后才能再次Lock()。异步调用Lock(),是正当的锁竞争,当然不会有panic了。适用于读写不确定场景,即读写次数没有明显的区别,并且只允许只有一个读或者写的场景,所以该锁也叫做全局锁。
func (m *Mutex) Unlock()用于解锁m,如果在使用Unlock()前未加锁,就会引起一个运行错误。已经锁定的Mutex并不与特定的goroutine相关联,这样可以利用一个goroutine对其加锁,再利用其他goroutine对其解锁。
建议:同一个互斥锁的成对锁定和解锁操作放在同一层次的代码块中。
使用锁的经典模式:
var lck sync.Mutex
func foo() {
lck.Lock()
defer lck.Unlock()
// ...
}
lck.Lock()会阻塞直到获取锁,然后利用defer语句在函数返回时自动释放锁。
下面代码通过3个goroutine来体现sync.Mutex 对资源的访问控制特征:
package main
import (
"fmt"
"sync"
"time"
)
func main() {
wg := sync.WaitGroup{}
var mutex sync.Mutex
fmt.Println("Locking (G0)")
mutex.Lock()
fmt.Println("locked (G0)")
wg.Add(3)
for i := 1; i < 4; i++ {
go func(i int) {
fmt.Printf("Locking (G%d)\n", i)
mutex.Lock()
fmt.Printf("locked (G%d)\n", i)
time.Sleep(time.Second * 2)
mutex.Unlock()
fmt.Printf("unlocked (G%d)\n", i)
wg.Done()
}(i)
}
time.Sleep(time.Second * 5)
fmt.Println("ready unlock (G0)")
mutex.Unlock()
fmt.Println("unlocked (G0)")
wg.Wait()
}
程序输出:
Locking (G0)
locked (G0)
Locking (G1)
Locking (G3)
Locking (G2)
ready unlock (G0)
unlocked (G0)
locked (G1)
unlocked (G1)
locked (G3)
locked (G2)
unlocked (G3)
unlocked (G2)
通过程序执行结果我们可以看到,当有锁释放时,才能进行lock动作,G0锁释放时,才有后续锁释放的可能,这里是G1抢到释放机会。
Mutex也可以作为struct的一部分,这样这个struct就会防止被多线程更改数据。
package main
import (
"fmt"
"sync"
"time"
)
type Book struct {
BookName string
L *sync.Mutex
}
func (bk *Book) SetName(wg *sync.WaitGroup, name string) {
defer func() {
fmt.Println("Unlock set name:", name)
bk.L.Unlock()
wg.Done()
}()
bk.L.Lock()
fmt.Println("Lock set name:", name)
time.Sleep(1 * time.Second)
bk.BookName = name
}
func main() {
bk := Book{}
bk.L = new(sync.Mutex)
wg := &sync.WaitGroup{}
books := []string{"《三国演义》", "《道德经》", "《西游记》"}
for _, book := range books {
wg.Add(1)
go bk.SetName(wg, book)
}
wg.Wait()
}
程序输出:
Lock set name: 《西游记》
Unlock set name: 《西游记》
Lock set name: 《三国演义》
Unlock set name: 《三国演义》
Lock set name: 《道德经》
Unlock set name: 《道德经》
23.2 读写锁
读写锁是分别针对读操作和写操作进行锁定和解锁操作的互斥锁。在Go语言中,读写锁由结构体类型sync.RWMutex代表。
基本遵循原则:
写锁定情况下,对读写锁进行读锁定或者写锁定,都将阻塞;而且读锁与写锁之间是互斥的;
读锁定情况下,对读写锁进行写锁定,将阻塞;加读锁时不会阻塞;
对未被写锁定的读写锁进行写解锁,会引发Panic;
对未被读锁定的读写锁进行读解锁的时候也会引发Panic;
写解锁在进行的同时会试图唤醒所有因进行读锁定而被阻塞的goroutine;
读解锁在进行的时候则会试图唤醒一个因进行写锁定而被阻塞的goroutine。
与互斥锁类似,sync.RWMutex类型的零值就已经是立即可用的读写锁了。在此类型的方法集合中包含了两对方法,即:
RWMutex提供四个方法:
func (*RWMutex) Lock // 写锁定
func (*RWMutex) Unlock // 写解锁
func (*RWMutex) RLock // 读锁定
func (*RWMutex) RUnlock // 读解锁
package main
import (
"fmt"
"sync"
"time"
)
var m *sync.RWMutex
func main() {
wg := sync.WaitGroup{}
wg.Add(20)
var rwMutex sync.RWMutex
Data := 0
for i := 0; i < 10; i++ {
go func(t int) {
rwMutex.RLock()
defer rwMutex.RUnlock()
fmt.Printf("Read data: %v\n", Data)
wg.Done()
time.Sleep(2 * time.Second)
// 这句代码第一次运行后,读解锁。
// 循环到第二个时,读锁定后,这个goroutine就没有阻塞,同时读成功。
}(i)
go func(t int) {
rwMutex.Lock()
defer rwMutex.Unlock()
Data += t
fmt.Printf("Write Data: %v %d \n", Data, t)
wg.Done()
// 这句代码让写锁的效果显示出来,写锁定下是需要解锁后才能写的。
time.Sleep(2 * time.Second)
}(i)
}
time.Sleep(5 * time.Second)
wg.Wait()
}
23.3 sync.WaitGroup
前面例子中我们有使用WaitGroup,它用于线程同步,WaitGroup等待一组线程集合完成,才会继续向下执行。 主线程(goroutine)调用Add来设置等待的线程(goroutine)数量。 然后每个线程(goroutine)运行,并在完成后调用Done。 同时,Wait用来阻塞,直到所有线程(goroutine)完成才会向下执行。Add(-1)和Done()效果一致。
package main
import (
"fmt"
"sync"
)
func main() {
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go func(t int) {
defer wg.Done()
fmt.Println(t)
}(i)
}
wg.Wait()
}
23.4 sync.Once
sync.Once.Do(f func())能保证once只执行一次,这个sync.Once块只会执行一次。
package main
import (
"fmt"
"sync"
"time"
)
var once sync.Once
func main() {
for i, v := range make([]string, 10) {
once.Do(onces)
fmt.Println("v:", v, "---i:", i)
}
for i := 0; i < 10; i++ {
go func(i int) {
once.Do(onced)
fmt.Println(i)
}(i)
}
time.Sleep(4000)
}
func onces() {
fmt.Println("onces")
}
func onced() {
fmt.Println("onced")
}
23.5 sync.Map
随着Go1.9的发布,有了一个新的特性,那就是sync.map,它是原生支持并发安全的map。虽然说普通map并不是线程安全(或者说并发安全),但一般情况下我们还是使用它,因为这足够了;只有在涉及到线程安全,再考虑sync.map。
但由于sync.Map的读取并不是类型安全的,所以我们在使用Load读取数据的时候我们需要做类型转换。
sync.Map的使用上和map有较大差异,详情见代码。
package main
import (
"fmt"
"sync"
)
func main() {
var m sync.Map
//Store
m.Store("name", "Joe")
m.Store("gender", "Male")
//LoadOrStore
//若key不存在,则存入key和value,返回false和输入的value
v, ok := m.LoadOrStore("name1", "Jim")
fmt.Println(ok, v) //false aaa
//若key已存在,则返回true和key对应的value,不会修改原来的value
v, ok = m.LoadOrStore("name", "aaa")
fmt.Println(ok, v) //false aaa
//Load
v, ok = m.Load("name")
if ok {
fmt.Println("key存在,值是: ", v)
} else {
fmt.Println("key不存在")
}
//Range
//遍历sync.Map
f := func(k, v interface{}) bool {
fmt.Println(k, v)
return true
}
m.Range(f)
//Delete
m.Delete("name1")
fmt.Println(m.Load("name1"))
}