version: 1.10
package elliptic
import "crypto/elliptic"
Overview
Package elliptic implements several standard elliptic curves over prime fields.
Index
- func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error)
- func Marshal(curve Curve, x, y *big.Int) []byte
- func Unmarshal(curve Curve, data []byte) (x, y *big.Int)
- type Curve
- type CurveParams
- func (curve CurveParams) Add(x1, y1, x2, y2 big.Int) (big.Int, big.Int)
- func (curve CurveParams) Double(x1, y1 big.Int) (big.Int, big.Int)
- func (curve CurveParams) IsOnCurve(x, y big.Int) bool
- func (curve CurveParams) Params() CurveParams
- func (curve CurveParams) ScalarBaseMult(k []byte) (big.Int, *big.Int)
- func (curve CurveParams) ScalarMult(Bx, By big.Int, k []byte) (big.Int, big.Int)
Package files
elliptic.go p224.go p256_amd64.go
func GenerateKey
¶
GenerateKey returns a public/private key pair. The private key is generated
using the given reader, which must return random data.
func Marshal
¶
Marshal converts a point into the uncompressed form specified in section 4.3.6
of ANSI X9.62.
func Unmarshal
¶
Unmarshal converts a point, serialized by Marshal, into an x, y pair. It is an
error if the point is not in uncompressed form or is not on the curve. On error,
x = nil.
type Curve
¶
- type Curve interface {
- // Params returns the parameters for the curve.
- Params() *CurveParams
- // IsOnCurve reports whether the given (x,y) lies on the curve.
- IsOnCurve(x, y *big.Int) bool
- // Add returns the sum of (x1,y1) and (x2,y2)
- Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
- // Double returns 2*(x,y)
- Double(x1, y1 *big.Int) (x, y *big.Int)
- // ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
- ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
- // ScalarBaseMult returns k*G, where G is the base point of the group
- // and k is an integer in big-endian form.
- ScalarBaseMult(k []byte) (x, y *big.Int)
- }
A Curve represents a short-form Weierstrass curve with a=-3. See
http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
func P224
¶
- func P224() Curve
P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2).
The cryptographic operations are implemented using constant-time algorithms.
func P256
¶
- func P256() Curve
P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3)
The cryptographic operations are implemented using constant-time algorithms.
func P384
¶
- func P384() Curve
P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4)
The cryptographic operations do not use constant-time algorithms.
func P521
¶
- func P521() Curve
P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
The cryptographic operations do not use constant-time algorithms.
type CurveParams
¶
- type CurveParams struct {
- P *big.Int // the order of the underlying field
- N *big.Int // the order of the base point
- B *big.Int // the constant of the curve equation
- Gx, Gy *big.Int // (x,y) of the base point
- BitSize int // the size of the underlying field
- Name string // the canonical name of the curve
- }
CurveParams contains the parameters of an elliptic curve and also provides a
generic, non-constant time implementation of Curve.
func (*CurveParams) Add
¶
func (*CurveParams) Double
¶
func (*CurveParams) IsOnCurve
¶
- func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool
func (*CurveParams) Params
¶
- func (curve *CurveParams) Params() *CurveParams