Flutter 布局(八)- Stack、IndexedStack、GridView详解

本文主要介绍Flutter布局中的Stack、IndexedStack、GridView控件,详细介绍了其布局行为以及使用场景,并对源码进行了分析。

1. Stack

A widget that positions its children relative to the edges of its box.

1.1 简介

Stack可以类比web中的absolute,绝对布局。绝对布局一般在移动端开发中用的较少,但是在某些场景下,还是有其作用。当然,能用Stack绝对布局完成的,用其他控件组合也都能实现。

1.2 布局行为

Stack的布局行为,根据child是positioned还是non-positioned来区分。

  • 对于positioned的子节点,它们的位置会根据所设置的top、bottom、right以及left属性来确定,这几个值都是相对于Stack的左上角;
  • 对于non-positioned的子节点,它们会根据Stack的aligment来设置位置。

对于绘制child的顺序,则是第一个child被绘制在最底端,后面的依次在前一个child的上面,类似于web中的z-index。如果想调整显示的顺序,则可以通过摆放child的顺序来进行。

1.3 继承关系

  1. Object > Diagnosticable > DiagnosticableTree > Widget > RenderObjectWidget > MultiChildRenderObjectWidget > Stack

1.4 示例代码

  1. Stack(
  2. alignment: const Alignment(0.6, 0.6),
  3. children: [
  4. CircleAvatar(
  5. backgroundImage: AssetImage('images/pic.jpg'),
  6. radius: 100.0,
  7. ),
  8. Container(
  9. decoration: BoxDecoration(
  10. color: Colors.black45,
  11. ),
  12. child: Text(
  13. 'Mia B',
  14. style: TextStyle(
  15. fontSize: 20.0,
  16. fontWeight: FontWeight.bold,
  17. color: Colors.white,
  18. ),
  19. ),
  20. ),
  21. ],
  22. );

示例代码我就直接用的Building Layouts in Flutter中的例子,效果如下

Stack例子

1.5 源码解析

构造函数如下:

  1. Stack({
  2. Key key,
  3. this.alignment = AlignmentDirectional.topStart,
  4. this.textDirection,
  5. this.fit = StackFit.loose,
  6. this.overflow = Overflow.clip,
  7. List<Widget> children = const <Widget>[],
  8. })

1.5.1 属性解析

alignment:对齐方式,默认是左上角(topStart)。

textDirection:文本的方向,绝大部分不需要处理。

fit:定义如何设置non-positioned节点尺寸,默认为loose。

其中StackFit有如下几种:

  • loose:子节点宽松的取值,可以从min到max的尺寸;
  • expand:子节点尽可能的占用空间,取max尺寸;
  • passthrough:不改变子节点的约束条件。

overflow:超过的部分是否裁剪掉(clipped)。

1.5.2 源码

Stack的布局代码有些长,在此分段进行讲解。

    1. 如果不包含子节点,则尺寸尽可能大。
  1. if (childCount == 0) {
  2. size = constraints.biggest;
  3. return;
  4. }
  • 2.根据fit属性,设置non-positioned子节点约束条件。
  1. switch (fit) {
  2. case StackFit.loose:
  3. nonPositionedConstraints = constraints.loosen();
  4. break;
  5. case StackFit.expand:
  6. nonPositionedConstraints = new BoxConstraints.tight(constraints.biggest);
  7. break;
  8. case StackFit.passthrough:
  9. nonPositionedConstraints = constraints;
  10. break;
  11. }
  • 3.对non-positioned子节点进行布局。
  1. RenderBox child = firstChild;
  2. while (child != null) {
  3. final StackParentData childParentData = child.parentData;
  4. if (!childParentData.isPositioned) {
  5. hasNonPositionedChildren = true;
  6. child.layout(nonPositionedConstraints, parentUsesSize: true);
  7. final Size childSize = child.size;
  8. width = math.max(width, childSize.width);
  9. height = math.max(height, childSize.height);
  10. }
  11. child = childParentData.nextSibling;
  12. }
  • 4.根据是否包含positioned子节点,对stack进行尺寸调整。
  1. if (hasNonPositionedChildren) {
  2. size = new Size(width, height);
  3. } else {
  4. size = constraints.biggest;
  5. }
  • 5.最后对子节点位置的调整,这个调整过程中,则根据alignment、positioned节点的绝对位置等信息,对子节点进行布局。

第一步是根据positioned的绝对位置,计算出约束条件后进行布局。

  1. if (childParentData.left != null && childParentData.right != null)
  2. childConstraints = childConstraints.tighten(width: size.width - childParentData.right - childParentData.left);
  3. else if (childParentData.width != null)
  4. childConstraints = childConstraints.tighten(width: childParentData.width);
  5. if (childParentData.top != null && childParentData.bottom != null)
  6. childConstraints = childConstraints.tighten(height: size.height - childParentData.bottom - childParentData.top);
  7. else if (childParentData.height != null)
  8. childConstraints = childConstraints.tighten(height: childParentData.height);
  9. child.layout(childConstraints, parentUsesSize: true);

第二步则是位置的调整,其中坐标的计算如下:

  1. double x;
  2. if (childParentData.left != null) {
  3. x = childParentData.left;
  4. } else if (childParentData.right != null) {
  5. x = size.width - childParentData.right - child.size.width;
  6. } else {
  7. x = _resolvedAlignment.alongOffset(size - child.size).dx;
  8. }
  9. if (x < 0.0 || x + child.size.width > size.width)
  10. _hasVisualOverflow = true;
  11. double y;
  12. if (childParentData.top != null) {
  13. y = childParentData.top;
  14. } else if (childParentData.bottom != null) {
  15. y = size.height - childParentData.bottom - child.size.height;
  16. } else {
  17. y = _resolvedAlignment.alongOffset(size - child.size).dy;
  18. }
  19. if (y < 0.0 || y + child.size.height > size.height)
  20. _hasVisualOverflow = true;
  21. childParentData.offset = new Offset(x, y);

1.6 使用场景

Stack的场景还是比较多的,对于需要叠加显示的布局,一般都可以使用Stack。有些场景下,也可以被其他控件替代,我们应该选择开销较小的控件去实现。

2. IndexedStack

A Stack that shows a single child from a list of children.

2.1 简介

IndexedStack继承自Stack,它的作用是显示第index个child,其他child都是不可见的。所以IndexedStack的尺寸永远是跟最大的子节点尺寸一致。

2.2 例子

在此还是将Stack的例子稍加改造,将index设置为1,也就是显示含文本的Container的节点。

  1. Container(
  2. color: Colors.yellow,
  3. child: IndexedStack(
  4. index: 1,
  5. alignment: const Alignment(0.6, 0.6),
  6. children: [
  7. CircleAvatar(
  8. backgroundImage: AssetImage('images/pic.jpg'),
  9. radius: 100.0,
  10. ),
  11. Container(
  12. decoration: BoxDecoration(
  13. color: Colors.black45,
  14. ),
  15. child: Text(
  16. 'Mia B',
  17. style: TextStyle(
  18. fontSize: 20.0,
  19. fontWeight: FontWeight.bold,
  20. color: Colors.white,
  21. ),
  22. ),
  23. ),
  24. ],
  25. ),
  26. )

IndexedStack例子

2.3 源码解析

其绘制代码很简单,因为继承自Stack,布局方面表现基本一致,不同之处在于其绘制的时候,只是将第Index个child进行了绘制。

  1. @override
  2. void paintStack(PaintingContext context, Offset offset) {
  3. if (firstChild == null || index == null)
  4. return;
  5. final RenderBox child = _childAtIndex();
  6. final StackParentData childParentData = child.parentData;
  7. context.paintChild(child, childParentData.offset + offset);
  8. }

2.4 使用场景

如果需要展示一堆控件中的一个,可以使用IndexedStack。有一定的使用场景,但是也有控件可以实现其功能,只不过操作起来可能会复杂一些。

3. GridView

A scrollable, 2D array of widgets.

3.1 简介

GridView在移动端上非常的常见,就是一个滚动的多列列表,实际的使用场景也非常的多。

3.2 布局行为

GridView的布局行为不复杂,本身是尽量占满空间区域,布局行为上完全继承自ScrollView。

3.3 继承关系

  1. Object > Diagnosticable > DiagnosticableTree > Widget > StatelessWidget > ScrollView > BoxScrollView > GridView

从继承关系看,GridView是在ScrollView的基础上封装而来的,这跟移动端的类似。

3.4 示例代码

  1. GridView.count(
  2. crossAxisCount: 2,
  3. children: List.generate(
  4. 100,
  5. (index) {
  6. return Center(
  7. child: Text(
  8. 'Item $index',
  9. style: Theme.of(context).textTheme.headline,
  10. ),
  11. );
  12. },
  13. ),
  14. );

示例代码直接用了Creating a Grid List中的例子,创建了一个2列总共100个子节点的列表。

3.5 源码解析

默认构造函数如下:

  1. GridView({
  2. Key key,
  3. Axis scrollDirection = Axis.vertical,
  4. bool reverse = false,
  5. ScrollController controller,
  6. bool primary,
  7. ScrollPhysics physics,
  8. bool shrinkWrap = false,
  9. EdgeInsetsGeometry padding,
  10. @required this.gridDelegate,
  11. bool addAutomaticKeepAlives = true,
  12. bool addRepaintBoundaries = true,
  13. double cacheExtent,
  14. List<Widget> children = const <Widget>[],
  15. })

同时也提供了如下额外的四种构造方法,方便开发者使用。

  1. GridView.builder
  2. GridView.custom
  3. GridView.count
  4. GridView.extent

3.5.1 属性解析

scrollDirection:滚动的方向,有垂直和水平两种,默认为垂直方向(Axis.vertical)。

reverse:默认是从上或者左向下或者右滚动的,这个属性控制是否反向,默认值为false,不反向滚动。

controller:控制child滚动时候的位置。

primary:是否是与父节点的PrimaryScrollController所关联的主滚动视图。

physics:滚动的视图如何响应用户的输入。

shrinkWrap:滚动方向的滚动视图内容是否应该由正在查看的内容所决定。

padding:四周的空白区域。

gridDelegate:控制GridView中子节点布局的delegate。

cacheExtent:缓存区域。

3.5.2 源码

  1. @override
  2. Widget build(BuildContext context) {
  3. final List<Widget> slivers = buildSlivers(context);
  4. final AxisDirection axisDirection = getDirection(context);
  5. final ScrollController scrollController = primary
  6. ? PrimaryScrollController.of(context)
  7. : controller;
  8. final Scrollable scrollable = new Scrollable(
  9. axisDirection: axisDirection,
  10. controller: scrollController,
  11. physics: physics,
  12. viewportBuilder: (BuildContext context, ViewportOffset offset) {
  13. return buildViewport(context, offset, axisDirection, slivers);
  14. },
  15. );
  16. return primary && scrollController != null
  17. ? new PrimaryScrollController.none(child: scrollable)
  18. : scrollable;
  19. }

上面这段代码是ScrollView的build方法,GridView就是一个特殊的ScrollView。GridView本身代码没有什么,基本上都是ScrollView上的东西,主要会涉及到Scrollable、Sliver、Viewport等内容,这些内容比较多,因此源码就先略了,后面单独出一篇文章对ScrollView进行分析吧。

3.6 使用场景

使用场景很多,非常常见的控件。也有控件可以实现其功能,例如官方说的,GridView实际上是一个silvers只包含一个SilverGrid的CustomScrollView。

4. 后话

笔者建了一个Flutter学习相关的项目,Github地址,里面包含了笔者写的关于Flutter学习相关的一些文章,会定期更新,也会上传一些学习Demo,欢迎大家关注。

5. 参考

  1. Stack class
  2. IndexedStack class
  3. GridView class
  4. ScrollView class