Checkpoints

概述

Checkpoint 使 Flink 的状态具有良好的容错性,通过 checkpoint 机制,Flink 可以对作业的状态和计算位置进行恢复。

参考 Checkpointing 查看如何在 Flink 程序中开启和配置 checkpoint。

保留 Checkpoint

Checkpoint 在默认的情况下仅用于恢复失败的作业,并不保留,当程序取消时 checkpoint 就会被删除。当然,你可以通过配置来保留 checkpoint,这些被保留的 checkpoint 在作业失败或取消时不会被清除。这样,你就可以使用该 checkpoint 来恢复失败的作业。

  1. CheckpointConfig config = env.getCheckpointConfig();
  2. config.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

ExternalizedCheckpointCleanup 配置项定义了当作业取消时,对作业 checkpoint 的操作:

  • ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:当作业取消时,保留作业的 checkpoint。注意,这种情况下,需要手动清除该作业保留的 checkpoint。
  • ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION:当作业取消时,删除作业的 checkpoint。仅当作业失败时,作业的 checkpoint 才会被保留。

目录结构

savepoints 相似,checkpoint 由元数据文件、数据文件(与 state backend 相关)组成。可通过配置文件中 “state.checkpoints.dir” 配置项来指定元数据文件和数据文件的存储路径,另外也可以在代码中针对单个作业特别指定该配置项。

通过配置文件全局配置

  1. state.checkpoints.dir: hdfs:///checkpoints/

创建 state backend 对单个作业进行配置

  1. env.setStateBackend(new RocksDBStateBackend("hdfs:///checkpoints-data/"));

Checkpoint 与 Savepoint 的区别

Checkpoint 与 savepoints 有一些区别,体现在 checkpoint :

  • 使用 state backend 特定的数据格式,可能以增量方式存储。
  • 不支持 Flink 的特定功能,比如扩缩容。

从保留的 checkpoint 中恢复状态

与 savepoint 一样,作业可以从 checkpoint 的元数据文件恢复运行(savepoint恢复指南)。注意,如果元数据文件中信息不充分,那么 jobmanager 就需要使用相关的数据文件来恢复作业(参考目录结构)。

  1. $ bin/flink run -s :checkpointMetaDataPath [:runArgs]