测试
测试是每个软件开发过程中不可或缺的一部分, Apache Flink 同样提供了在测试金字塔的多个级别上测试应用程序代码的工具。
测试用户自定义函数
通常,我们可以假设 Flink 在用户自定义函数之外产生了正确的结果。因此,建议尽可能多的用单元测试来测试那些包含主要业务逻辑的类。
单元测试无状态、无时间限制的 UDF
例如,让我们以以下无状态的 MapFunction
为例。
Java
public class IncrementMapFunction implements MapFunction<Long, Long> {
@Override
public Long map(Long record) throws Exception {
return record + 1;
}
}
Scala
class IncrementMapFunction extends MapFunction[Long, Long] {
override def map(record: Long): Long = {
record + 1
}
}
通过传递合适地参数并验证输出,你可以很容易的使用你喜欢的测试框架对这样的函数进行单元测试。
Java
public class IncrementMapFunctionTest {
@Test
public void testIncrement() throws Exception {
// instantiate your function
IncrementMapFunction incrementer = new IncrementMapFunction();
// call the methods that you have implemented
assertEquals(3L, incrementer.map(2L));
}
}
Scala
class IncrementMapFunctionTest extends FlatSpec with Matchers {
"IncrementMapFunction" should "increment values" in {
// instantiate your function
val incrementer: IncrementMapFunction = new IncrementMapFunction()
// call the methods that you have implemented
incremeter.map(2) should be (3)
}
}
类似地,对于使用 org.apache.flink.util.Collector
的用户自定义函数(例如FlatMapFunction
或者 ProcessFunction
),可以通过提供模拟对象而不是真正的 collector 来轻松测试。具有与 IncrementMapFunction
相同功能的 FlatMapFunction
可以按照以下方式进行单元测试。
Java
public class IncrementFlatMapFunctionTest {
@Test
public void testIncrement() throws Exception {
// instantiate your function
IncrementFlatMapFunction incrementer = new IncrementFlatMapFunction();
Collector<Integer> collector = mock(Collector.class);
// call the methods that you have implemented
incrementer.flatMap(2L, collector);
//verify collector was called with the right output
Mockito.verify(collector, times(1)).collect(3L);
}
}
Scala
class IncrementFlatMapFunctionTest extends FlatSpec with MockFactory {
"IncrementFlatMapFunction" should "increment values" in {
// instantiate your function
val incrementer : IncrementFlatMapFunction = new IncrementFlatMapFunction()
val collector = mock[Collector[Integer]]
//verify collector was called with the right output
(collector.collect _).expects(3)
// call the methods that you have implemented
flattenFunction.flatMap(2, collector)
}
}
对有状态或及时 UDF 和自定义算子进行单元测试
对使用管理状态或定时器的用户自定义函数的功能测试会更加困难,因为它涉及到测试用户代码和 Flink 运行时的交互。 为此,Flink 提供了一组所谓的测试工具,可用于测试用户自定义函数和自定义算子:
OneInputStreamOperatorTestHarness
(适用于DataStream
上的算子)KeyedOneInputStreamOperatorTestHarness
(适用于KeyedStream
上的算子)TwoInputStreamOperatorTestHarness
(f适用于两个DataStream
的ConnectedStreams
算子)KeyedTwoInputStreamOperatorTestHarness
(适用于两个KeyedStream
上的ConnectedStreams
算子)
要使用测试工具,还需要一组其他的依赖项,请查阅配置小节了解更多细节。
现在,可以使用测试工具将记录和 watermark 推送到用户自定义函数或自定义算子中,控制处理时间,最后对算子的输出(包括旁路输出)进行校验。
Java
public class StatefulFlatMapTest {
private OneInputStreamOperatorTestHarness<Long, Long> testHarness;
private StatefulFlatMap statefulFlatMapFunction;
@Before
public void setupTestHarness() throws Exception {
//instantiate user-defined function
statefulFlatMapFunction = new StatefulFlatMapFunction();
// wrap user defined function into a the corresponding operator
testHarness = new OneInputStreamOperatorTestHarness<>(new StreamFlatMap<>(statefulFlatMapFunction));
// optionally configured the execution environment
testHarness.getExecutionConfig().setAutoWatermarkInterval(50);
// open the test harness (will also call open() on RichFunctions)
testHarness.open();
}
@Test
public void testingStatefulFlatMapFunction() throws Exception {
//push (timestamped) elements into the operator (and hence user defined function)
testHarness.processElement(2L, 100L);
//trigger event time timers by advancing the event time of the operator with a watermark
testHarness.processWatermark(100L);
//trigger processing time timers by advancing the processing time of the operator directly
testHarness.setProcessingTime(100L);
//retrieve list of emitted records for assertions
assertThat(testHarness.getOutput(), containsInExactlyThisOrder(3L));
//retrieve list of records emitted to a specific side output for assertions (ProcessFunction only)
//assertThat(testHarness.getSideOutput(new OutputTag<>("invalidRecords")), hasSize(0))
}
}
Scala
class StatefulFlatMapFunctionTest extends FlatSpec with Matchers with BeforeAndAfter {
private var testHarness: OneInputStreamOperatorTestHarness[Long, Long] = null
private var statefulFlatMap: StatefulFlatMapFunction = null
before {
//instantiate user-defined function
statefulFlatMap = new StatefulFlatMap
// wrap user defined function into a the corresponding operator
testHarness = new OneInputStreamOperatorTestHarness[Long, Long](new StreamFlatMap(statefulFlatMap))
// optionally configured the execution environment
testHarness.getExecutionConfig().setAutoWatermarkInterval(50)
// open the test harness (will also call open() on RichFunctions)
testHarness.open()
}
"StatefulFlatMap" should "do some fancy stuff with timers and state" in {
//push (timestamped) elements into the operator (and hence user defined function)
testHarness.processElement(2, 100)
//trigger event time timers by advancing the event time of the operator with a watermark
testHarness.processWatermark(100)
//trigger proccesign time timers by advancing the processing time of the operator directly
testHarness.setProcessingTime(100)
//retrieve list of emitted records for assertions
testHarness.getOutput should contain (3)
//retrieve list of records emitted to a specific side output for assertions (ProcessFunction only)
//testHarness.getSideOutput(new OutputTag[Int]("invalidRecords")) should have size 0
}
}
KeyedOneInputStreamOperatorTestHarness
和 KeyedTwoInputStreamOperatorTestHarness
可以通过为键的类另外提供一个包含 TypeInformation
的 KeySelector
来实例化。
Java
public class StatefulFlatMapFunctionTest {
private OneInputStreamOperatorTestHarness<String, Long, Long> testHarness;
private StatefulFlatMap statefulFlatMapFunction;
@Before
public void setupTestHarness() throws Exception {
//instantiate user-defined function
statefulFlatMapFunction = new StatefulFlatMapFunction();
// wrap user defined function into a the corresponding operator
testHarness = new KeyedOneInputStreamOperatorTestHarness<>(new StreamFlatMap<>(statefulFlatMapFunction), new MyStringKeySelector(), Types.STRING);
// open the test harness (will also call open() on RichFunctions)
testHarness.open();
}
//tests
}
Scala
class StatefulFlatMapTest extends FlatSpec with Matchers with BeforeAndAfter {
private var testHarness: OneInputStreamOperatorTestHarness[String, Long, Long] = null
private var statefulFlatMapFunction: FlattenFunction = null
before {
//instantiate user-defined function
statefulFlatMapFunction = new StateFulFlatMap
// wrap user defined function into a the corresponding operator
testHarness = new KeyedOneInputStreamOperatorTestHarness(new StreamFlatMap(statefulFlatMapFunction),new MyStringKeySelector(), Types.STRING())
// open the test harness (will also call open() on RichFunctions)
testHarness.open()
}
//tests
}
在 Flink 代码库里可以找到更多使用这些测试工具的示例,例如:
org.apache.flink.streaming.runtime.operators.windowing.WindowOperatorTest
是测试算子和用户自定义函数(取决于处理时间和事件时间)的一个很好的例子。
注意 AbstractStreamOperatorTestHarness
及其派生类目前不属于公共 API,可以进行更改。
单元测试 Process Function
考虑到它的重要性,除了之前可以直接用于测试 ProcessFunction
的测试工具之外,Flink 还提供了一个名为 ProcessFunctionTestHarnesses
的测试工具工厂类,可以简化测试工具的实例化。考虑以下示例:
注意 要使用此测试工具,还需要引入上一节中介绍的依赖项。
Java
public static class PassThroughProcessFunction extends ProcessFunction<Integer, Integer> {
@Override
public void processElement(Integer value, Context ctx, Collector<Integer> out) throws Exception {
out.collect(value);
}
}
Scala
class PassThroughProcessFunction extends ProcessFunction[Integer, Integer] {
@throws[Exception]
override def processElement(value: Integer, ctx: ProcessFunction[Integer, Integer]#Context, out: Collector[Integer]): Unit = {
out.collect(value)
}
}
通过传递合适的参数并验证输出,对使用 ProcessFunctionTestHarnesses
是很容易进行单元测试并验证输出。
Java
public class PassThroughProcessFunctionTest {
@Test
public void testPassThrough() throws Exception {
//instantiate user-defined function
PassThroughProcessFunction processFunction = new PassThroughProcessFunction();
// wrap user defined function into a the corresponding operator
OneInputStreamOperatorTestHarness<Integer, Integer> harness = ProcessFunctionTestHarnesses
.forProcessFunction(processFunction);
//push (timestamped) elements into the operator (and hence user defined function)
harness.processElement(1, 10);
//retrieve list of emitted records for assertions
assertEquals(harness.extractOutputValues(), Collections.singletonList(1));
}
}
Scala
class PassThroughProcessFunctionTest extends FlatSpec with Matchers {
"PassThroughProcessFunction" should "forward values" in {
//instantiate user-defined function
val processFunction = new PassThroughProcessFunction
// wrap user defined function into a the corresponding operator
val harness = ProcessFunctionTestHarnesses.forProcessFunction(processFunction)
//push (timestamped) elements into the operator (and hence user defined function)
harness.processElement(1, 10)
//retrieve list of emitted records for assertions
harness.extractOutputValues() should contain (1)
}
}
有关如何使用 ProcessFunctionTestHarnesses
来测试 ProcessFunction
不同风格的更多示例,, 例如 KeyedProcessFunction
,KeyedCoProcessFunction
,BroadcastProcessFunction
等,鼓励用户自行查看 ProcessFunctionTestHarnessesTest
。
测试 Flink 作业
JUnit 规则 MiniClusterWithClientResource
Apache Flink 提供了一个名为 MiniClusterWithClientResource
的 Junit 规则,用于针对本地嵌入式小型集群测试完整的作业。 叫做 MiniClusterWithClientResource
.
要使用 MiniClusterWithClientResource
,需要添加一个额外的依赖项(测试范围)。
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-test-utils</artifactId>
<version>1.20.0</version>
<scope>test</scope>
</dependency>
Copied to clipboard!
让我们采用与前面几节相同的简单 MapFunction
来做示例。
Java
public class IncrementMapFunction implements MapFunction<Long, Long> {
@Override
public Long map(Long record) throws Exception {
return record + 1;
}
}
Scala
class IncrementMapFunction extends MapFunction[Long, Long] {
override def map(record: Long): Long = {
record + 1
}
}
现在,可以在本地 Flink 集群使用这个 MapFunction
的简单 pipeline,如下所示。
Java
public class ExampleIntegrationTest {
@ClassRule
public static MiniClusterWithClientResource flinkCluster =
new MiniClusterWithClientResource(
new MiniClusterResourceConfiguration.Builder()
.setNumberSlotsPerTaskManager(2)
.setNumberTaskManagers(1)
.build());
@Test
public void testIncrementPipeline() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// configure your test environment
env.setParallelism(2);
// values are collected in a static variable
CollectSink.values.clear();
// create a stream of custom elements and apply transformations
env.fromElements(1L, 21L, 22L)
.map(new IncrementMapFunction())
.addSink(new CollectSink());
// execute
env.execute();
// verify your results
assertTrue(CollectSink.values.containsAll(2L, 22L, 23L));
}
// create a testing sink
private static class CollectSink implements SinkFunction<Long> {
// must be static
public static final List<Long> values = Collections.synchronizedList(new ArrayList<>());
@Override
public void invoke(Long value, SinkFunction.Context context) throws Exception {
values.add(value);
}
}
}
Scala
class StreamingJobIntegrationTest extends FlatSpec with Matchers with BeforeAndAfter {
val flinkCluster = new MiniClusterWithClientResource(new MiniClusterResourceConfiguration.Builder()
.setNumberSlotsPerTaskManager(2)
.setNumberTaskManagers(1)
.build)
before {
flinkCluster.before()
}
after {
flinkCluster.after()
}
"IncrementFlatMapFunction pipeline" should "incrementValues" in {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// configure your test environment
env.setParallelism(2)
// values are collected in a static variable
CollectSink.values.clear()
// create a stream of custom elements and apply transformations
env.fromElements(1L, 21L, 22L)
.map(new IncrementMapFunction())
.addSink(new CollectSink())
// execute
env.execute()
// verify your results
CollectSink.values should contain allOf (2, 22, 23)
}
}
// create a testing sink
class CollectSink extends SinkFunction[Long] {
override def invoke(value: Long, context: SinkFunction.Context): Unit = {
CollectSink.values.add(value)
}
}
object CollectSink {
// must be static
val values: util.List[Long] = Collections.synchronizedList(new util.ArrayList())
}
关于使用 MiniClusterWithClientResource
进行集成测试的几点备注:
为了不将整个 pipeline 代码从生产复制到测试,请将你的 source 和 sink 在生产代码中设置成可插拔的,并在测试中注入特殊的测试 source 和测试 sink。
这里使用
CollectSink
中的静态变量,是因为Flink 在将所有算子分布到整个集群之前先对其进行了序列化。 解决此问题的一种方法是与本地 Flink 小型集群通过实例化算子的静态变量进行通信。 或者,你可以使用测试的 sink 将数据写入临时目录的文件中。如果你的作业使用事件时间计时器,则可以实现自定义的 并行 源函数来发出 watermark。
建议始终以 parallelism > 1 的方式在本地测试 pipeline,以识别只有在并行执行 pipeline 时才会出现的 bug。
优先使用
@ClassRule
而不是@Rule
,这样多个测试可以共享同一个 Flink 集群。这样做可以节省大量的时间,因为 Flink 集群的启动和关闭通常会占用实际测试的执行时间。如果你的 pipeline 包含自定义状态处理,则可以通过启用 checkpoint 并在小型集群中重新启动作业来测试其正确性。为此,你需要在 pipeline 中(仅测试)抛出用户自定义函数的异常来触发失败。