Hadoop formats
Project Configuration
Support for Hadoop is contained in the flink-hadoop-compatibility
Maven module.
Add the following dependency to your pom.xml
to use hadoop
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-hadoop-compatibility_2.12</artifactId>
<version>1.17.2</version>
</dependency>
If you want to run your Flink application locally (e.g. from your IDE), you also need to add a hadoop-client
dependency such as:
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.10.2</version>
<scope>provided</scope>
</dependency>
Using Hadoop InputFormats
To use Hadoop InputFormats
with Flink the format must first be wrapped using either readHadoopFile
or createHadoopInput
of the HadoopInputs
utility class. The former is used for input formats derived from FileInputFormat
while the latter has to be used for general purpose input formats. The resulting InputFormat
can be used to create a data source by using ExecutionEnvironment#createInput
.
The resulting DataSet
contains 2-tuples where the first field is the key and the second field is the value retrieved from the Hadoop InputFormat.
The following example shows how to use Hadoop’s TextInputFormat
.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<LongWritable, Text>> input =
env.createInput(HadoopInputs.readHadoopFile(new TextInputFormat(),
LongWritable.class, Text.class, textPath));
// Do something with the data.
[...]
Scala
val env = ExecutionEnvironment.getExecutionEnvironment
val input: DataSet[(LongWritable, Text)] =
env.createInput(HadoopInputs.readHadoopFile(
new TextInputFormat, classOf[LongWritable], classOf[Text], textPath))
// Do something with the data.
[...]
Using Hadoop OutputFormats
Flink provides a compatibility wrapper for Hadoop OutputFormats
. Any class that implements org.apache.hadoop.mapred.OutputFormat
or extends org.apache.hadoop.mapreduce.OutputFormat
is supported. The OutputFormat wrapper expects its input data to be a DataSet containing 2-tuples of key and value. These are to be processed by the Hadoop OutputFormat.
The following example shows how to use Hadoop’s TextOutputFormat
.
Java
// Obtain the result we want to emit
DataSet<Tuple2<Text, IntWritable>> hadoopResult = [...];
// Set up the Hadoop TextOutputFormat.
HadoopOutputFormat<Text, IntWritable> hadoopOF =
// create the Flink wrapper.
new HadoopOutputFormat<Text, IntWritable>(
// set the Hadoop OutputFormat and specify the job.
new TextOutputFormat<Text, IntWritable>(), job
);
hadoopOF.getConfiguration().set("mapreduce.output.textoutputformat.separator", " ");
TextOutputFormat.setOutputPath(job, new Path(outputPath));
// Emit data using the Hadoop TextOutputFormat.
hadoopResult.output(hadoopOF);
Scala
// Obtain your result to emit.
val hadoopResult: DataSet[(Text, IntWritable)] = [...]
val hadoopOF = new HadoopOutputFormat[Text,IntWritable](
new TextOutputFormat[Text, IntWritable],
new JobConf)
hadoopOF.getJobConf.set("mapred.textoutputformat.separator", " ")
FileOutputFormat.setOutputPath(hadoopOF.getJobConf, new Path(resultPath))
hadoopResult.output(hadoopOF)