NoSQL (Distributed / Big Data) Databases
Warning
The current page still doesn’t have a translation for this language.
But you can help translating it: Contributing.
FastAPI can also be integrated with any NoSQL.
Here we’ll see an example using Couchbase, a document based NoSQL database.
You can adapt it to any other NoSQL database like:
- MongoDB
- Cassandra
- CouchDB
- ArangoDB
- ElasticSearch, etc.
Tip
There is an official project generator with FastAPI and Couchbase, all based on Docker, including a frontend and more tools: https://github.com/tiangolo/full-stack-fastapi-couchbase
Import Couchbase components
For now, don’t pay attention to the rest, only the imports:
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
Define a constant to use as a “document type”
We will use it later as a fixed field type
in our documents.
This is not required by Couchbase, but is a good practice that will help you afterwards.
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
Add a function to get a Bucket
In Couchbase, a bucket is a set of documents, that can be of different types.
They are generally all related to the same application.
The analogy in the relational database world would be a “database” (a specific database, not the database server).
The analogy in MongoDB would be a “collection”.
In the code, a Bucket
represents the main entrypoint of communication with the database.
This utility function will:
- Connect to a Couchbase cluster (that might be a single machine).
- Set defaults for timeouts.
- Authenticate in the cluster.
- Get a
Bucket
instance.- Set defaults for timeouts.
- Return it.
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
Create Pydantic models
As Couchbase “documents” are actually just “JSON objects”, we can model them with Pydantic.
User
model
First, let’s create a User
model:
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
We will use this model in our path operation function, so, we don’t include in it the hashed_password
.
UserInDB
model
Now, let’s create a UserInDB
model.
This will have the data that is actually stored in the database.
We don’t create it as a subclass of Pydantic’s BaseModel
but as a subclass of our own User
, because it will have all the attributes in User
plus a couple more:
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
Note
Notice that we have a hashed_password
and a type
field that will be stored in the database.
But it is not part of the general User
model (the one we will return in the path operation).
Get the user
Now create a function that will:
- Take a username.
- Generate a document ID from it.
- Get the document with that ID.
- Put the contents of the document in a
UserInDB
model.
By creating a function that is only dedicated to getting your user from a username
(or any other parameter) independent of your path operation function, you can more easily re-use it in multiple parts and also add unit tests for it:
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
f-strings
If you are not familiar with the f"userprofile::{username}"
, it is a Python “f-string“.
Any variable that is put inside of {}
in an f-string will be expanded / injected in the string.
dict
unpacking
If you are not familiar with the UserInDB(**result.value)
, it is using dict
“unpacking”.
It will take the dict
at result.value
, and take each of its keys and values and pass them as key-values to UserInDB
as keyword arguments.
So, if the dict
contains:
{
"username": "johndoe",
"hashed_password": "some_hash",
}
It will be passed to UserInDB
as:
UserInDB(username="johndoe", hashed_password="some_hash")
Create your FastAPI code
Create the FastAPI
app
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
Create the path operation function
As our code is calling Couchbase and we are not using the experimental Python await
support, we should declare our function with normal def
instead of async def
.
Also, Couchbase recommends not using a single Bucket
object in multiple “threads”, so, we can just get the bucket directly and pass it to our utility functions:
from typing import Optional
from couchbase import LOCKMODE_WAIT
from couchbase.bucket import Bucket
from couchbase.cluster import Cluster, PasswordAuthenticator
from fastapi import FastAPI
from pydantic import BaseModel
USERPROFILE_DOC_TYPE = "userprofile"
def get_bucket():
cluster = Cluster(
"couchbase://couchbasehost:8091?fetch_mutation_tokens=1&operation_timeout=30&n1ql_timeout=300"
)
authenticator = PasswordAuthenticator("username", "password")
cluster.authenticate(authenticator)
bucket: Bucket = cluster.open_bucket("bucket_name", lockmode=LOCKMODE_WAIT)
bucket.timeout = 30
bucket.n1ql_timeout = 300
return bucket
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
type: str = USERPROFILE_DOC_TYPE
hashed_password: str
def get_user(bucket: Bucket, username: str):
doc_id = f"userprofile::{username}"
result = bucket.get(doc_id, quiet=True)
if not result.value:
return None
user = UserInDB(**result.value)
return user
# FastAPI specific code
app = FastAPI()
@app.get("/users/{username}", response_model=User)
def read_user(username: str):
bucket = get_bucket()
user = get_user(bucket=bucket, username=username)
return user
Recap
You can integrate any third party NoSQL database, just using their standard packages.
The same applies to any other external tool, system or API.