Imports
Introduction
To support interactive computing, fastai provides easy access to commonly-used external modules. A star import such as:
from fastai.basics import *
will populate the current namespace with these external modules in addition to fastai-specific functions and variables. This page documents these convenience imports, which are defined in fastai.imports.
Note: since this document was manually created, it could be outdated by the time you read it. To get the up-to-date listing of imports, use:
python -c 'a = set([*vars().keys(), "a"]); from fastai.basics import *; print(*sorted(set(vars().keys())-a), sep="n")'
Names in bold are modules. If an object was aliased during its import, the original name is listed in parentheses.
Name | Description |
---|---|
csv | CSV file reading and writing |
gc | Garbage collector interface |
gzip | Support for gzip files |
os | Miscellaneous operating system interfaces |
pickle | Python object serialization |
shutil | High level file operations |
sys | System-specific parameters and functions |
warnings , warn | Warning control |
yaml | YAML parser and emitter |
io , BufferedWriter , BytesIO | Core tools for working with streams |
subprocess | Subprocess management |
math | Mathematical functions |
plt (matplotlib.pyplot ) | MATLAB-like plotting framework |
np (numpy ) , array , cos , exp ,log , sin , tan , tanh | Multi-dimensional arrays, mathematical functions |
pd (pandas ), Series , DataFrame | Data structures and tools for data analysis |
random | Generate pseudo-random numbers |
scipy.stats | Statistical functions |
scipy.special | Special functions |
abstractmethod , abstractproperty | Abstract base classes |
collections , Counter , defaultdict ,namedtuple , OrderedDict | Container datatypes |
abc (collections.abc ), Iterable | Abstract base classes for containers |
hashlib | Secure hashes and message digests |
itertools | Functions creating iterators for efficient looping |
json | JSON encoder and decoder |
operator , attrgetter , itemgetter | Standard operators as functions |
pathlib , Path | Object-oriented filesystem paths |
mimetypes | Map filenames to MIME types |
inspect | Inspect live objects |
typing , Any , AnyStr , Callable ,Collection , Dict , Hashable , Iterator ,List , Mapping , NewType , Optional ,Sequence , Tuple , TypeVar , Union | Support for type hints |
functools , partial , reduce | Higher-order functions and operations on callable objects |
importlib | The implementatin of import |
weakref | Weak references |
html | HyperText Markup Language support |
re | Regular expression operations |
requests | HTTP for Humans™ |
tarfile | Read and write tar archive files |
numbers , Number | Numeric abstract base classes |
tempfile | Generate temporary files and directories |
concurrent , ProcessPoolExecutor ,ThreadPoolExecutor | Launch parallel tasks |
copy , deepcopy | Shallow and deep copy operation |
dataclass , field , InitVar | Data Classes |
Enum , IntEnum | Support for enumerations |
set_trace | The Python debugger |
patches (matplotlib.patches ), Patch | ? |
patheffects (matplotlib.patheffects ) | ? |
contextmanager | Utilities for with -statement contexts |
MasterBar , master_bar , ProgressBar ,progress_bar | Simple and flexible progress bar for Jupyter Notebook and console |
pkg_resources | Package discovery and resource access |
SimpleNamespace | Dynamic type creation and names for built-in types |
torch , as_tensor , ByteTensor ,DoubleTensor , FloatTensor , HalfTensor ,LongTensor , ShortTensor , Tensor | Tensor computation and deep learning |
nn (torch.nn ), weight_norm , spectral_norm | Neural networks with PyTorch |
F (torch.nn.functional ) | PyTorch functional interface |
optim (torch.optim ) | Optimization algorithms in PyTorch |
BatchSampler , DataLoader , Dataset ,Sampler , TensorDataset | PyTorch data utils |
©2021 fast.ai. All rights reserved.
Site last generated: Jan 5, 2021