callbacks
Callbacks implemented in the fastai library
List of callbacks
fastai’s training loop is highly extensible, with a rich callback system. See the callback
docs if you’re interested in writing your own callback. See below for a list of callbacks that are provided with fastai, grouped by the module they’re defined in.
Every callback that is passed to Learner
with the callback_fns
parameter will be automatically stored as an attribute. The attribute name is snake-cased, so for instance ActivationStats
will appear as learn.activation_stats
(assuming your object is named learn
).
Callback
This sub-package contains more sophisticated callbacks that each are in their own module. They are (click the link for more details):
LRFinder
Use Leslie Smith’s learning rate finder to find a good learning rate for training your model. Let’s see an example of use on the MNIST dataset with a simple CNN.
path = untar_data(URLs.MNIST_SAMPLE)
data = ImageDataBunch.from_folder(path)
def simple_learner(): return Learner(data, simple_cnn((3,16,16,2)), metrics=[accuracy])
learn = simple_learner()
The fastai librairy already has a Learner method called lr_find
that uses LRFinder
to plot the loss as a function of the learning rate
learn.lr_find()
LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.
learn.recorder.plot()
In this example, a learning rate around 2e-2 seems like the right fit.
lr = 2e-2
OneCycleScheduler
Train with Leslie Smith’s 1cycle annealing method. Let’s train our simple learner using the one cycle policy.
learn.fit_one_cycle(3, lr)
Total time: 00:07
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 0.109439 | 0.059349 | 0.980864 | 00:02 |
1 | 0.039582 | 0.023152 | 0.992149 | 00:02 |
2 | 0.019009 | 0.021239 | 0.991659 | 00:02 |
The learning rate and the momentum were changed during the epochs as follows (more info on the dedicated documentation page).
learn.recorder.plot_lr(show_moms=True)
MixUpCallback
Data augmentation using the method from mixup: Beyond Empirical Risk Minimization. It is very simple to add mixup in fastai :
learn = Learner(data, simple_cnn((3, 16, 16, 2)), metrics=[accuracy]).mixup()
CSVLogger
Log the results of training in a csv file. Simply pass the CSVLogger callback to the Learner.
learn = Learner(data, simple_cnn((3, 16, 16, 2)), metrics=[accuracy, error_rate], callback_fns=[CSVLogger])
learn.fit(3)
Total time: 00:07
epoch | train_loss | valid_loss | accuracy | error_rate | time |
---|---|---|---|---|---|
0 | 0.127259 | 0.098069 | 0.969578 | 0.030422 | 00:02 |
1 | 0.084601 | 0.068024 | 0.974975 | 0.025025 | 00:02 |
2 | 0.055074 | 0.047266 | 0.983317 | 0.016683 | 00:02 |
You can then read the csv.
learn.csv_logger.read_logged_file()
epoch | train_loss | valid_loss | accuracy | error_rate | |
---|---|---|---|---|---|
0 | 0 | 0.127259 | 0.098069 | 0.969578 | 0.030422 |
1 | 1 | 0.084601 | 0.068024 | 0.974975 | 0.025025 |
2 | 2 | 0.055074 | 0.047266 | 0.983317 | 0.016683 |
GeneralScheduler
Create your own multi-stage annealing schemes with a convenient API. To illustrate, let’s implement a 2 phase schedule.
def fit_odd_shedule(learn, lr):
n = len(learn.data.train_dl)
phases = [TrainingPhase(n).schedule_hp('lr', lr, anneal=annealing_cos),
TrainingPhase(n*2).schedule_hp('lr', lr, anneal=annealing_poly(2))]
sched = GeneralScheduler(learn, phases)
learn.callbacks.append(sched)
total_epochs = 3
learn.fit(total_epochs)
learn = Learner(data, simple_cnn((3,16,16,2)), metrics=accuracy)
fit_odd_shedule(learn, 1e-3)
Total time: 00:07
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 0.176607 | 0.157229 | 0.946025 | 00:02 |
1 | 0.140903 | 0.133690 | 0.954367 | 00:02 |
2 | 0.130910 | 0.131156 | 0.956820 | 00:02 |
learn.recorder.plot_lr()
MixedPrecision
Use fp16 to take advantage of tensor cores on recent NVIDIA GPUs for a 200% or more speedup.
HookCallback
Convenient wrapper for registering and automatically deregistering PyTorch hooks. Also contains pre-defined hook callback: ActivationStats
.
RNNTrainer
Callback taking care of all the tweaks to train an RNN.
TerminateOnNaNCallback
Stop training if the loss reaches NaN.
EarlyStoppingCallback
Stop training if a given metric/validation loss doesn’t improve.
SaveModelCallback
Save the model at every epoch, or the best model for a given metric/validation loss.
learn = Learner(data, simple_cnn((3,16,16,2)), metrics=accuracy)
learn.fit_one_cycle(3,1e-4, callbacks=[SaveModelCallback(learn, every='epoch', monitor='accuracy')])
Total time: 00:07
epoch | train_loss | valid_loss | accuracy | time |
---|---|---|---|---|
0 | 0.679189 | 0.646599 | 0.804220 | 00:02 |
1 | 0.527475 | 0.497290 | 0.908243 | 00:02 |
2 | 0.464756 | 0.462471 | 0.917076 | 00:02 |
!ls ~/.fastai/data/mnist_sample/models
best.pth bestmodel_2.pth model_1.pth model_4.pth stage-1.pth
bestmodel_0.pth bestmodel_3.pth model_2.pth model_5.pth tmp.pth
bestmodel_1.pth model_0.pth model_3.pth one_epoch.pth trained_model.pth
ReduceLROnPlateauCallback
Reduce the learning rate each time a given metric/validation loss doesn’t improve by a certain factor.
PeakMemMetric
GPU and general RAM profiling callback
StopAfterNBatches
Stop training after n batches of the first epoch.
LearnerTensorboardWriter
Broadly useful callback for Learners that writes to Tensorboard. Writes model histograms, losses/metrics, embedding projector and gradient stats.
train
and basic_train
Recorder
Track per-batch and per-epoch smoothed losses and metrics.
ShowGraph
Dynamically display a learning chart during training.
BnFreeze
Freeze batchnorm layer moving average statistics for non-trainable layers.
GradientClipping
Clips gradient during training.
©2021 fast.ai. All rights reserved.
Site last generated: Jan 5, 2021