Title
/usr/local/lib/python3.8/dist-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
return torch._C._cuda_getDeviceCount() > 0
bs = 4
letters = list(string.ascii_lowercase)
DataLoader helpers
fastai includes a replacement for Pytorch’s DataLoader which is largely API-compatible, and adds a lot of useful functionality and flexibility. Before we look at the class, there are a couple of helpers we’ll need to define.
fa_collate
[source]
fa_collate
(t
)
A replacement for PyTorch default_collate
which maintains types and handles Sequence
s
t = [(1,(2,3)),(1,(2,3))]
test_eq(fa_collate(t), default_collate(t))
test_eq(L(fa_collate(t)).map(type), [Tensor,tuple])
t = [(1,(2,(3,4))),(1,(2,(3,4)))]
test_eq(fa_collate(t), default_collate(t))
test_eq(L(fa_collate(t)).map(type), [Tensor,tuple])
test_eq(L(fa_collate(t)[1]).map(type), [Tensor,tuple])
fa_convert
[source]
fa_convert
(t
)
A replacement for PyTorch default_convert
which maintains types and handles Sequence
s
t0 = array([1,2])
t = [t0,(t0,t0)]
test_eq(fa_convert(t), default_convert(t))
test_eq(L(fa_convert(t)).map(type), [Tensor,tuple])
class
SkipItemException
[source]
SkipItemException
() ::Exception
Raised to notify DataLoader
to skip an item
class
DataLoader
[source]
DataLoader
(dataset
=None
,bs
=None
,num_workers
=0
,pin_memory
=False
,timeout
=0
,batch_size
=None
,shuffle
=False
,drop_last
=False
,indexed
=None
,n
=None
,device
=None
,persistent_workers
=False
,wif
=None
,before_iter
=None
,after_item
=None
,before_batch
=None
,after_batch
=None
,after_iter
=None
,create_batches
=None
,create_item
=None
,create_batch
=None
,retain
=None
,get_idxs
=None
,sample
=None
,shuffle_fn
=None
,do_batch
=None
) ::GetAttr
API compatible with PyTorch DataLoader, with a lot more callbacks and flexibility
Arguments to DataLoader
:
dataset
: dataset from which to load the data. Can be either map-style or iterable-style dataset.bs
(int): how many samples per batch to load (ifbatch_size
is provided thenbatch_size
will overridebs
). Ifbs=None
, then it is assumed thatdataset.__getitem__
returns a batch.num_workers
(int): how many subprocesses to use for data loading.0
means that the data will be loaded in the main process.pin_memory
(bool): IfTrue
, the data loader will copy Tensors into CUDA pinned memory before returning them.timeout
(float>0): the timeout value in seconds for collecting a batch from workers.batch_size
(int): It is only provided for PyTorch compatibility. Usebs
.shuffle
(bool): IfTrue
, then data is shuffled every time dataloader is fully read/iterated.drop_last
(bool): IfTrue
, then the last incomplete batch is dropped.indexed
(bool): TheDataLoader
will make a guess as to whether the dataset can be indexed (or is iterable), but you can override it with this parameter.True
by default.n
(int): Defaults tolen(dataset)
. If you are using iterable-style dataset, you can specify the size withn
.device
(torch.device): Defaults todefault_device()
which is CUDA by default. You can specify device astorch.device('cpu')
.
Override item
and use the default infinite sampler to get a stream of unknown length (stop()
when you want to stop the stream).
class RandDL(DataLoader):
def create_item(self, s):
r = random.random()
return r if r<0.95 else stop()
L(RandDL())
(#80) [0.7080409288034344,0.03380592302379748,0.3295210988884517,0.3984895442219716,0.2466406073732288,0.784596719349558,0.7405184556807134,0.8781785423004165,0.06125487321640455,0.49829694909644495...]
L(RandDL(bs=4, drop_last=True)).map(len)
(#2) [4,4]
dl = RandDL(bs=4, num_workers=4, drop_last=True)
L(dl).map(len)
(#20) [4,4,4,4,4,4,4,4,4,4...]
test_num_workers = 0 if sys.platform == "win32" else 4
test_eq(dl.fake_l.num_workers, test_num_workers)
with dl.fake_l.no_multiproc():
test_eq(dl.fake_l.num_workers, 0)
L(dl).map(len)
test_eq(dl.fake_l.num_workers, test_num_workers)
def _rand_item(s):
r = random.random()
return r if r<0.95 else stop()
L(DataLoader(create_item=_rand_item))
(#50) [0.013926194175715834,0.5455661909308923,0.5540701885046865,0.38608142489299,0.11039197023987835,0.5609994837228025,0.511809356329029,0.21402937998255644,0.2856955111775398,0.3976737532547229...]
If you don’t set bs
, then dataset
is assumed to provide an iterator or a __getitem__
that returns a batch.
ds1 = DataLoader(letters)
test_eq(L(ds1), letters)
test_eq(len(ds1), 26)
test_shuffled(L(DataLoader(letters, shuffle=True)), letters)
ds1 = DataLoader(letters, indexed=False)
test_eq(L(ds1), letters)
test_eq(len(ds1), 26)
t2 = L(tensor([0,1,2]),tensor([3,4,5]))
ds2 = DataLoader(t2)
test_eq_type(L(ds2), t2)
t3 = L(array([0,1,2], dtype=np.int64),array([3,4,5], dtype=np.int64))
ds3 = DataLoader(t3)
test_eq_type(L(ds3), t3.map(tensor))
ds4 = DataLoader(t3, create_batch=noop, after_iter=lambda: setattr(t3, 'f', 1))
test_eq_type(L(ds4), t3)
test_eq(t3.f, 1)
If you do set bs
, then dataset
is assumed to provide an iterator or a __getitem__
that returns a single item of a batch.
def twoepochs(d): return ' '.join(''.join(list(o)) for _ in range(2) for o in d)
ds1 = DataLoader(letters, bs=4, drop_last=True, num_workers=0)
test_eq(twoepochs(ds1), 'abcd efgh ijkl mnop qrst uvwx abcd efgh ijkl mnop qrst uvwx')
ds1 = DataLoader(letters,4,num_workers=2)
test_eq(twoepochs(ds1), 'abcd efgh ijkl mnop qrst uvwx yz abcd efgh ijkl mnop qrst uvwx yz')
ds1 = DataLoader(range(12), bs=4, num_workers=3)
test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10,11])))
ds1 = DataLoader([str(i) for i in range(11)], bs=4, after_iter=lambda: setattr(t3, 'f', 2))
test_eq_type(L(ds1), L(['0','1','2','3'],['4','5','6','7'],['8','9','10']))
test_eq(t3.f, 2)
it = iter(DataLoader(map(noop,range(20)), bs=4, num_workers=1))
test_eq_type([next(it) for _ in range(3)], [tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10,11])])
Iterable dataloaders require specific tests.
class DummyIterableDataset(IterableDataset):
def __iter__(self):
yield from range(11)
ds1 = DataLoader(DummyIterableDataset(), bs=4)
# Check it yields fine, and check we can do multiple passes
for i in range(3):
test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10])))
# Check `drop_last` works fine (with multiple passes, since this will prematurely terminate the iterator)
ds1 = DataLoader(DummyIterableDataset(), bs=4, drop_last=True)
for i in range(3):
test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7])))
class SleepyDL(list):
def __getitem__(self,i):
time.sleep(random.random()/50)
return super().__getitem__(i)
t = SleepyDL(letters)
%time test_eq(DataLoader(t, num_workers=0), letters)
%time test_eq(DataLoader(t, num_workers=2), letters)
%time test_eq(DataLoader(t, num_workers=4), letters)
dl = DataLoader(t, shuffle=True, num_workers=1)
test_shuffled(L(dl), letters)
test_shuffled(L(dl), L(dl))
L(dl)
CPU times: user 4 ms, sys: 0 ns, total: 4 ms
Wall time: 268 ms
CPU times: user 12 ms, sys: 28 ms, total: 40 ms
Wall time: 196 ms
CPU times: user 32 ms, sys: 20 ms, total: 52 ms
Wall time: 137 ms
(#26) ['b','z','j','i','c','m','l','p','u','v'...]
class SleepyQueue():
"Simulate a queue with varying latency"
def __init__(self, q): self.q=q
def __iter__(self):
while True:
time.sleep(random.random()/100)
try: yield self.q.get_nowait()
except queues.Empty: return
q = Queue()
for o in range(30): q.put(o)
it = SleepyQueue(q)
if not (sys.platform == "win32" and IN_NOTEBOOK):
%time test_shuffled(L(DataLoader(it, num_workers=4)), L(range(30)))
CPU times: user 8 ms, sys: 44 ms, total: 52 ms
Wall time: 110 ms
class A(TensorBase): pass
for nw in (0,2):
t = A(tensor([1,2]))
dl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=nw)
b = first(dl)
test_eq(type(b), A)
t = (A(tensor([1,2])),)
dl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=nw)
b = first(dl)
test_eq(type(b[0]), A)
list(DataLoader(list(range(50)),bs=32,shuffle=True,num_workers=3))
[tensor([24, 25, 15, 38, 36, 42, 6, 18, 17, 3, 47, 33, 22, 44, 11, 23, 9, 49,
31, 30, 8, 37, 14, 41, 27, 13, 34, 1, 12, 21, 2, 28]),
tensor([45, 39, 43, 26, 7, 35, 32, 20, 46, 48, 40, 19, 5, 16, 10, 0, 29, 4])]
class A(TensorBase): pass
t = A(tensor(1,2))
tdl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=2, after_batch=to_device)
b = first(tdl)
test_eq(type(b), A)
# Unknown attributes are delegated to `dataset`
test_eq(tdl.pop(), tensor(1,2))
Override get_idxs
to return the same index until consumption of the DL. This is intented to test consistent sampling behavior when num_workers
>1.
class AdamantDL(DataLoader):
def get_idxs(self):
r=random.randint(0,self.n-1)
return [r] * self.n
test_eq(torch.cat(tuple(AdamantDL((list(range(50))),bs=16,num_workers=4))).unique().numel(),1)
from subprocess import Popen, PIPE
# test num_workers > 0 in scripts works when python process start method is spawn
process = Popen(["python", "dltest.py"], stdout=PIPE)
_, err = process.communicate(timeout=15)
exit_code = process.wait()
test_eq(exit_code, 0)
©2021 fast.ai. All rights reserved.
Site last generated: Mar 31, 2021