- Layers
- Pooling layers
- BatchNorm layers
class
BatchNorm1dFlat
[source]class
LinBnDrop
[source]- Inits
- Convolutions
- Embeddings
class
Embedding
[source]- Self attention
- PixelShuffle
class
PixelShuffle_ICNR
[source]- Sequential extensions
class
SequentialEx
[source]class
MergeLayer
[source]- Concat
- Ready-to-go models
- Swish and Mish
class
Swish
[source]class
MishJitAutoFn
[source]class
Mish
[source]- Helper functions for submodules
Layers
Custom fastai layers and basic functions to grab them.
/usr/local/lib/python3.8/dist-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
return torch._C._cuda_getDeviceCount() > 0
Basic manipulations and resize
module
[source]
module
(*flds
, **defaults
)
Decorator to create an nn.Module
using f
as forward
method
class
Identity
[source]
Identity
() ::Module
Do nothing at all
test_eq(Identity()(1), 1)
class
Lambda
[source]
Lambda
(func
) ::Module
An easy way to create a pytorch layer for a simple func
def _add2(x): return x+2
tst = Lambda(_add2)
x = torch.randn(10,20)
test_eq(tst(x), x+2)
tst2 = pickle.loads(pickle.dumps(tst))
test_eq(tst2(x), x+2)
tst
Lambda(func=<function _add2 at 0x7f6d5c369170>)
class
PartialLambda
[source]
PartialLambda
(func
) ::Lambda
Layer that applies partial(func, **kwargs)
def test_func(a,b=2): return a+b
tst = PartialLambda(test_func, b=5)
test_eq(tst(x), x+5)
class
Flatten
[source]
Flatten
(full
=False
) ::Module
Flatten x
to a single dimension, e.g. at end of a model. full
for rank-1 tensor
tst = Flatten()
x = torch.randn(10,5,4)
test_eq(tst(x).shape, [10,20])
tst = Flatten(full=True)
test_eq(tst(x).shape, [200])
class
View
[source]
View
(*size
) ::Module
Reshape x
to size
tst = View(10,5,4)
test_eq(tst(x).shape, [10,5,4])
class
ResizeBatch
[source]
ResizeBatch
(*size
) ::Module
Reshape x
to size
, keeping batch dim the same size
tst = ResizeBatch(5,4)
test_eq(tst(x).shape, [10,5,4])
class
Debugger
[source]
Debugger
() ::Module
A module to debug inside a model.
sigmoid_range
[source]
sigmoid_range
(x
,low
,high
)
Sigmoid function with range (low, high)
test = tensor([-10.,0.,10.])
assert torch.allclose(sigmoid_range(test, -1, 2), tensor([-1.,0.5, 2.]), atol=1e-4, rtol=1e-4)
assert torch.allclose(sigmoid_range(test, -5, -1), tensor([-5.,-3.,-1.]), atol=1e-4, rtol=1e-4)
assert torch.allclose(sigmoid_range(test, 2, 4), tensor([2., 3., 4.]), atol=1e-4, rtol=1e-4)
class
SigmoidRange
[source]
SigmoidRange
(low
,high
) ::Module
Sigmoid module with range (low, high)
tst = SigmoidRange(-1, 2)
assert torch.allclose(tst(test), tensor([-1.,0.5, 2.]), atol=1e-4, rtol=1e-4)
Pooling layers
class
AdaptiveConcatPool1d
[source]
AdaptiveConcatPool1d
(size
=None
) ::Module
Layer that concats AdaptiveAvgPool1d
and AdaptiveMaxPool1d
class
AdaptiveConcatPool2d
[source]
AdaptiveConcatPool2d
(size
=None
) ::Module
Layer that concats AdaptiveAvgPool2d
and AdaptiveMaxPool2d
If the input is bs x nf x h x h
, the output will be bs x 2*nf x 1 x 1
if no size is passed or bs x 2*nf x size x size
tst = AdaptiveConcatPool2d()
x = torch.randn(10,5,4,4)
test_eq(tst(x).shape, [10,10,1,1])
max1 = torch.max(x, dim=2, keepdim=True)[0]
maxp = torch.max(max1, dim=3, keepdim=True)[0]
test_eq(tst(x)[:,:5], maxp)
test_eq(tst(x)[:,5:], x.mean(dim=[2,3], keepdim=True))
tst = AdaptiveConcatPool2d(2)
test_eq(tst(x).shape, [10,10,2,2])
class
PoolType
[source]
PoolType
()
adaptive_pool
[source]
adaptive_pool
(pool_type
)
class
PoolFlatten
[source]
PoolFlatten
(pool_type
='Avg'
) ::Sequential
Combine nn.AdaptiveAvgPool2d
and Flatten
.
tst = PoolFlatten()
test_eq(tst(x).shape, [10,5])
test_eq(tst(x), x.mean(dim=[2,3]))
BatchNorm layers
BatchNorm
[source]
BatchNorm
(nf
,ndim
=2
,norm_type
=<NormType.Batch: 1>
,eps
=1e-05
,momentum
=0.1
,affine
=True
,track_running_stats
=True
)
BatchNorm layer with nf
features and ndim
initialized depending on norm_type
.
InstanceNorm
[source]
InstanceNorm
(nf
,ndim
=2
,norm_type
=<NormType.Instance: 5>
,affine
=True
,eps
:float
=1e-05
,momentum
:float
=0.1
,track_running_stats
:bool
=False
)
InstanceNorm layer with nf
features and ndim
initialized depending on norm_type
.
kwargs
are passed to nn.BatchNorm
and can be eps
, momentum
, affine
and track_running_stats
.
tst = BatchNorm(15)
assert isinstance(tst, nn.BatchNorm2d)
test_eq(tst.weight, torch.ones(15))
tst = BatchNorm(15, norm_type=NormType.BatchZero)
test_eq(tst.weight, torch.zeros(15))
tst = BatchNorm(15, ndim=1)
assert isinstance(tst, nn.BatchNorm1d)
tst = BatchNorm(15, ndim=3)
assert isinstance(tst, nn.BatchNorm3d)
tst = InstanceNorm(15)
assert isinstance(tst, nn.InstanceNorm2d)
test_eq(tst.weight, torch.ones(15))
tst = InstanceNorm(15, norm_type=NormType.InstanceZero)
test_eq(tst.weight, torch.zeros(15))
tst = InstanceNorm(15, ndim=1)
assert isinstance(tst, nn.InstanceNorm1d)
tst = InstanceNorm(15, ndim=3)
assert isinstance(tst, nn.InstanceNorm3d)
If affine
is false the weight should be None
test_eq(BatchNorm(15, affine=False).weight, None)
test_eq(InstanceNorm(15, affine=False).weight, None)
class
BatchNorm1dFlat
[source]
BatchNorm1dFlat
(num_features
,eps
=1e-05
,momentum
=0.1
,affine
=True
,track_running_stats
=True
) ::BatchNorm1d
nn.BatchNorm1d
, but first flattens leading dimensions
tst = BatchNorm1dFlat(15)
x = torch.randn(32, 64, 15)
y = tst(x)
mean = x.mean(dim=[0,1])
test_close(tst.running_mean, 0*0.9 + mean*0.1)
var = (x-mean).pow(2).mean(dim=[0,1])
test_close(tst.running_var, 1*0.9 + var*0.1, eps=1e-4)
test_close(y, (x-mean)/torch.sqrt(var+1e-5) * tst.weight + tst.bias, eps=1e-4)
class
LinBnDrop
[source]
LinBnDrop
(n_in
,n_out
,bn
=True
,p
=0.0
,act
=None
,lin_first
=False
) ::Sequential
Module grouping BatchNorm1d
, Dropout
and Linear
layers
The BatchNorm
layer is skipped if bn=False
, as is the dropout if p=0.
. Optionally, you can add an activation for after the linear layer with act
.
tst = LinBnDrop(10, 20)
mods = list(tst.children())
test_eq(len(mods), 2)
assert isinstance(mods[0], nn.BatchNorm1d)
assert isinstance(mods[1], nn.Linear)
tst = LinBnDrop(10, 20, p=0.1)
mods = list(tst.children())
test_eq(len(mods), 3)
assert isinstance(mods[0], nn.BatchNorm1d)
assert isinstance(mods[1], nn.Dropout)
assert isinstance(mods[2], nn.Linear)
tst = LinBnDrop(10, 20, act=nn.ReLU(), lin_first=True)
mods = list(tst.children())
test_eq(len(mods), 3)
assert isinstance(mods[0], nn.Linear)
assert isinstance(mods[1], nn.ReLU)
assert isinstance(mods[2], nn.BatchNorm1d)
tst = LinBnDrop(10, 20, bn=False)
mods = list(tst.children())
test_eq(len(mods), 1)
assert isinstance(mods[0], nn.Linear)
Inits
sigmoid
[source]
sigmoid
(input
,eps
=1e-07
)
Same as torch.sigmoid
, plus clamping to `(eps,1-eps)
sigmoid_
[source]
sigmoid_
(input
,eps
=1e-07
)
Same as torch.sigmoid_
, plus clamping to `(eps,1-eps)
vleaky_relu
[source]
vleaky_relu
(input
,inplace
=True
)
F.leaky_relu
with 0.3 slope
init_default
[source]
init_default
(m
,func
=kaiming_normal_
)
Initialize m
weights with func
and set bias
to 0.
init_linear
[source]
init_linear
(m
,act_func
=None
,init
='auto'
,bias_std
=0.01
)
Convolutions
class
ConvLayer
[source]
ConvLayer
(ni
,nf
,ks
=3
,stride
=1
,padding
=None
,bias
=None
,ndim
=2
,norm_type
=<NormType.Batch: 1>
,bn_1st
=True
,act_cls
=ReLU
,transpose
=False
,init
='auto'
,xtra
=None
,bias_std
=0.01
,dilation
:Union
[int
,Tuple
[int
,int
]]=1
,groups
:int
=1
,padding_mode
:str
='zeros'
) ::Sequential
Create a sequence of convolutional (ni
to nf
), ReLU (if use_activ
) and norm_type
layers.
The convolution uses ks
(kernel size) stride
, padding
and bias
. padding
will default to the appropriate value ((ks-1)//2
if it’s not a transposed conv) and bias
will default to True
the norm_type
is Spectral
or Weight
, False
if it’s Batch
or BatchZero
. Note that if you don’t want any normalization, you should pass norm_type=None
.
This defines a conv layer with ndim
(1,2 or 3) that will be a ConvTranspose if transpose=True
. act_cls
is the class of the activation function to use (instantiated inside). Pass act=None
if you don’t want an activation function. If you quickly want to change your default activation, you can change the value of defaults.activation
.
init
is used to initialize the weights (the bias are initialized to 0) and xtra
is an optional layer to add at the end.
tst = ConvLayer(16, 32)
mods = list(tst.children())
test_eq(len(mods), 3)
test_eq(mods[1].weight, torch.ones(32))
test_eq(mods[0].padding, (1,1))
x = torch.randn(64, 16, 8, 8)#.cuda()
test_eq(tst(x).shape, [64,32,8,8])
tst = ConvLayer(16, 32, stride=2)
test_eq(tst(x).shape, [64,32,4,4])
tst = ConvLayer(16, 32, padding=0)
test_eq(tst(x).shape, [64,32,6,6])
assert mods[0].bias is None
#But can be overridden with `bias=True`
tst = ConvLayer(16, 32, bias=True)
assert first(tst.children()).bias is not None
#For no norm, or spectral/weight, bias is True by default
for t in [None, NormType.Spectral, NormType.Weight]:
tst = ConvLayer(16, 32, norm_type=t)
assert first(tst.children()).bias is not None
tst = ConvLayer(16, 32, ndim=3)
assert isinstance(list(tst.children())[0], nn.Conv3d)
tst = ConvLayer(16, 32, ndim=1, transpose=True)
assert isinstance(list(tst.children())[0], nn.ConvTranspose1d)
tst = ConvLayer(16, 32, ndim=3, act_cls=None)
mods = list(tst.children())
test_eq(len(mods), 2)
tst = ConvLayer(16, 32, ndim=3, act_cls=partial(nn.LeakyReLU, negative_slope=0.1))
mods = list(tst.children())
test_eq(len(mods), 3)
assert isinstance(mods[2], nn.LeakyReLU)
# def linear(in_features, out_features, bias=True, act_cls=None, init='auto'):
# "Linear layer followed by optional activation, with optional auto-init"
# res = nn.Linear(in_features, out_features, bias=bias)
# if act_cls: act_cls = act_cls()
# init_linear(res, act_cls, init=init)
# if act_cls: res = nn.Sequential(res, act_cls)
# return res
# @delegates(ConvLayer)
# def conv1d(ni, nf, ks, stride=1, ndim=1, norm_type=None, **kwargs):
# "Convolutional layer followed by optional activation, with optional auto-init"
# return ConvLayer(ni, nf, ks, stride=stride, ndim=ndim, norm_type=norm_type, **kwargs)
# @delegates(ConvLayer)
# def conv2d(ni, nf, ks, stride=1, ndim=2, norm_type=None, **kwargs):
# "Convolutional layer followed by optional activation, with optional auto-init"
# return ConvLayer(ni, nf, ks, stride=stride, ndim=ndim, norm_type=norm_type, **kwargs)
# @delegates(ConvLayer)
# def conv3d(ni, nf, ks, stride=1, ndim=3, norm_type=None, **kwargs):
# "Convolutional layer followed by optional activation, with optional auto-init"
# return ConvLayer(ni, nf, ks, stride=stride, ndim=ndim, norm_type=norm_type, **kwargs)
AdaptiveAvgPool
[source]
AdaptiveAvgPool
(sz
=1
,ndim
=2
)
nn.AdaptiveAvgPool layer for ndim
MaxPool
[source]
MaxPool
(ks
=2
,stride
=None
,padding
=0
,ndim
=2
,ceil_mode
=False
)
nn.MaxPool layer for ndim
AvgPool
[source]
AvgPool
(ks
=2
,stride
=None
,padding
=0
,ndim
=2
,ceil_mode
=False
)
nn.AvgPool layer for ndim
Embeddings
trunc_normal_
[source]
trunc_normal_
(x
,mean
=0.0
,std
=1.0
)
Truncated normal initialization (approximation)
class
Embedding
[source]
Embedding
(ni
,nf
,std
=0.01
) ::Embedding
Embedding layer with truncated normal initialization
Truncated normal initialization bounds the distribution to avoid large value. For a given standard deviation std
, the bounds are roughly -2*std
, 2*std
.
std = 0.02
tst = Embedding(10, 30, std)
assert tst.weight.min() > -2*std
assert tst.weight.max() < 2*std
test_close(tst.weight.mean(), 0, 1e-2)
test_close(tst.weight.std(), std, 0.1)
Self attention
class
SelfAttention
[source]
SelfAttention
(n_channels
) ::Module
Self attention layer for n_channels
.
Self-attention layer as introduced in Self-Attention Generative Adversarial Networks.
Initially, no change is done to the input. This is controlled by a trainable parameter named gamma
as we return x + gamma * out
.
tst = SelfAttention(16)
x = torch.randn(32, 16, 8, 8)
test_eq(tst(x),x)
Then during training gamma
will probably change since it’s a trainable parameter. Let’s see what’s happening when it gets a nonzero value.
tst.gamma.data.fill_(1.)
y = tst(x)
test_eq(y.shape, [32,16,8,8])
The attention mechanism requires three matrix multiplications (here represented by 1x1 convs). The multiplications are done on the channel level (the second dimension in our tensor) and we flatten the feature map (which is 8x8 here). As in the paper, we note f
, g
and h
the results of those multiplications.
q,k,v = tst.query[0].weight.data,tst.key[0].weight.data,tst.value[0].weight.data
test_eq([q.shape, k.shape, v.shape], [[2, 16, 1], [2, 16, 1], [16, 16, 1]])
f,g,h = map(lambda m: x.view(32, 16, 64).transpose(1,2) @ m.squeeze().t(), [q,k,v])
test_eq([f.shape, g.shape, h.shape], [[32,64,2], [32,64,2], [32,64,16]])
The key part of the attention layer is to compute attention weights for each of our location in the feature map (here 8x8 = 64). Those are positive numbers that sum to 1 and tell the model to pay attention to this or that part of the picture. We make the product of f
and the transpose of g
(to get something of size bs by 64 by 64) then apply a softmax on the first dimension (to get the positive numbers that sum up to 1). The result can then be multiplied with h
transposed to get an output of size bs by channels by 64, which we can then be viewed as an output the same size as the original input.
The final result is then x + gamma * out
as we saw before.
beta = F.softmax(torch.bmm(f, g.transpose(1,2)), dim=1)
test_eq(beta.shape, [32, 64, 64])
out = torch.bmm(h.transpose(1,2), beta)
test_eq(out.shape, [32, 16, 64])
test_close(y, x + out.view(32, 16, 8, 8), eps=1e-4)
class
PooledSelfAttention2d
[source]
PooledSelfAttention2d
(n_channels
) ::Module
Pooled self attention layer for 2d.
Self-attention layer used in the Big GAN paper.
It uses the same attention as in SelfAttention
but adds a max pooling of stride 2 before computing the matrices g
and h
: the attention is ported on one of the 2x2 max-pooled window, not the whole feature map. There is also a final matrix product added at the end to the output, before retuning gamma * out + x
.
class
SimpleSelfAttention
[source]
SimpleSelfAttention
(n_in
:int
,ks
=1
,sym
=False
) ::Module
Same as nn.Module
, but no need for subclasses to call super().__init__
PixelShuffle
PixelShuffle introduced in this article to avoid checkerboard artifacts when upsampling images. If we want an output with ch_out
filters, we use a convolution with ch_out * (r**2)
filters, where r
is the upsampling factor. Then we reorganize those filters like in the picture below:
icnr_init
[source]
icnr_init
(x
,scale
=2
,init
=kaiming_normal_
)
ICNR init of x
, with scale
and init
function
ICNR init was introduced in this article. It suggests to initialize the convolution that will be used in PixelShuffle so that each of the r**2
channels get the same weight (so that in the picture above, the 9 colors in a 3 by 3 window are initially the same).
Note: This is done on the first dimension because PyTorch stores the weights of a convolutional layer in this format: ch_out x ch_in x ks x ks
.
tst = torch.randn(16*4, 32, 1, 1)
tst = icnr_init(tst)
for i in range(0,16*4,4):
test_eq(tst[i],tst[i+1])
test_eq(tst[i],tst[i+2])
test_eq(tst[i],tst[i+3])
class
PixelShuffle_ICNR
[source]
PixelShuffle_ICNR
(ni
,nf
=None
,scale
=2
,blur
=False
,norm_type
=<NormType.Weight: 3>
,act_cls
=ReLU
) ::Sequential
Upsample by scale
from ni
filters to nf
(default ni
), using nn.PixelShuffle
.
The convolutional layer is initialized with icnr_init
and passed act_cls
and norm_type
(the default of weight normalization seemed to be what’s best for super-resolution problems, in our experiments).
The blur
option comes from Super-Resolution using Convolutional Neural Networks without Any Checkerboard Artifacts where the authors add a little bit of blur to completely get rid of checkerboard artifacts.
psfl = PixelShuffle_ICNR(16, norm_type=None) #Deactivate weight norm as it changes the weight
x = torch.randn(64, 16, 8, 8)
y = psfl(x)
test_eq(y.shape, [64, 16, 16, 16])
#ICNR init makes every 2x2 window (stride 2) have the same elements
for i in range(0,16,2):
for j in range(0,16,2):
test_eq(y[:,:,i,j],y[:,:,i+1,j])
test_eq(y[:,:,i,j],y[:,:,i ,j+1])
test_eq(y[:,:,i,j],y[:,:,i+1,j+1])
Sequential extensions
sequential
[source]
sequential
(*args
)
Create an nn.Sequential
, wrapping items with Lambda
if needed
class
SequentialEx
[source]
SequentialEx
(*layers
) ::Module
Like nn.Sequential
, but with ModuleList semantics, and can access module input
This is useful to write layers that require to remember the input (like a resnet block) in a sequential way.
class
MergeLayer
[source]
MergeLayer
(dense
:bool
=False
) ::Module
Merge a shortcut with the result of the module by adding them or concatenating them if dense=True
.
res_block = SequentialEx(ConvLayer(16, 16), ConvLayer(16,16))
res_block.append(MergeLayer()) # just to test append - normally it would be in init params
x = torch.randn(32, 16, 8, 8)
y = res_block(x)
test_eq(y.shape, [32, 16, 8, 8])
test_eq(y, x + res_block[1](res_block[0](x)))
x = TensorBase(torch.randn(32, 16, 8, 8))
y = res_block(x)
test_is(y.orig, None)
Concat
Equivalent to keras.layers.Concatenate, it will concat the outputs of a ModuleList over a given dimension (default the filter dimension)
class
Cat
[source]
Cat
(layers
,dim
=1
) ::ModuleList
Concatenate layers outputs over a given dim
layers = [ConvLayer(2,4), ConvLayer(2,4), ConvLayer(2,4)]
x = torch.rand(1,2,8,8)
cat = Cat(layers)
test_eq(cat(x).shape, [1,12,8,8])
test_eq(cat(x), torch.cat([l(x) for l in layers], dim=1))
Ready-to-go models
class
SimpleCNN
[source]
SimpleCNN
(filters
,kernel_szs
=None
,strides
=None
,bn
=True
) ::Sequential
Create a simple CNN with filters
.
The model is a succession of convolutional layers from (filters[0],filters[1])
to (filters[n-2],filters[n-1])
(if n
is the length of the filters
list) followed by a PoolFlatten
. kernel_szs
and strides
defaults to a list of 3s and a list of 2s. If bn=True
the convolutional layers are successions of conv-relu-batchnorm, otherwise conv-relu.
tst = SimpleCNN([8,16,32])
mods = list(tst.children())
test_eq(len(mods), 3)
test_eq([[m[0].in_channels, m[0].out_channels] for m in mods[:2]], [[8,16], [16,32]])
Test kernel sizes
tst = SimpleCNN([8,16,32], kernel_szs=[1,3])
mods = list(tst.children())
test_eq([m[0].kernel_size for m in mods[:2]], [(1,1), (3,3)])
Test strides
tst = SimpleCNN([8,16,32], strides=[1,2])
mods = list(tst.children())
test_eq([m[0].stride for m in mods[:2]], [(1,1),(2,2)])
class
ProdLayer
[source]
ProdLayer
() ::Module
Merge a shortcut with the result of the module by multiplying them.
SEModule
[source]
SEModule
(ch
,reduction
,act_cls
=ReLU
)
class
ResBlock
[source]
ResBlock
(expansion
,ni
,nf
,stride
=1
,groups
=1
,reduction
=None
,nh1
=None
,nh2
=None
,dw
=False
,g2
=1
,sa
=False
,sym
=False
,norm_type
=<NormType.Batch: 1>
,act_cls
=ReLU
,ndim
=2
,ks
=3
,pool
=AvgPool
,pool_first
=True
,padding
=None
,bias
=None
,bn_1st
=True
,transpose
=False
,init
='auto'
,xtra
=None
,bias_std
=0.01
,dilation
:Union
[int
,Tuple
[int
,int
]]=1
,padding_mode
:str
='zeros'
) ::Module
Resnet block from ni
to nh
with stride
This is a resnet block (normal or bottleneck depending on expansion
, 1 for the normal block and 4 for the traditional bottleneck) that implements the tweaks from Bag of Tricks for Image Classification with Convolutional Neural Networks. In particular, the last batchnorm layer (if that is the selected norm_type
) is initialized with a weight (or gamma) of zero to facilitate the flow from the beginning to the end of the network. It also implements optional Squeeze and Excitation and grouped convs for ResNeXT and similar models (use dw=True
for depthwise convs).
The kwargs
are passed to ConvLayer
along with norm_type
.
SEBlock
[source]
SEBlock
(expansion
,ni
,nf
,groups
=1
,reduction
=16
,stride
=1
, **kwargs
)
SEResNeXtBlock
[source]
SEResNeXtBlock
(expansion
,ni
,nf
,groups
=32
,reduction
=16
,stride
=1
,base_width
=4
, **kwargs
)
SeparableBlock
[source]
SeparableBlock
(expansion
,ni
,nf
,reduction
=16
,stride
=1
,base_width
=4
, **kwargs
)
Swish and Mish
swish
[source]
swish
(x
,inplace
=False
)
class
Swish
[source]
Swish
() ::Module
Same as nn.Module
, but no need for subclasses to call super().__init__
class
MishJitAutoFn
[source]
MishJitAutoFn
() ::Function
Records operation history and defines formulas for differentiating ops.
See the Note on extending the autograd engine for more details on how to use this class: https://pytorch.org/docs/stable/notes/extending.html#extending-torch-autograd
Every operation performed on :class:Tensor
s creates a new function object, that performs the computation, and records that it happened. The history is retained in the form of a DAG of functions, with edges denoting data dependencies (input <- output
). Then, when backward is called, the graph is processed in the topological ordering, by calling :func:backward
methods of each :class:Function
object, and passing returned gradients on to next :class:Function
s.
Normally, the only way users interact with functions is by creating subclasses and defining new operations. This is a recommended way of extending torch.autograd.
Examples::
>>> class Exp(Function):
>>>
>>> @staticmethod
>>> def forward(ctx, i):
>>> result = i.exp()
>>> ctx.save_for_backward(result)
>>> return result
>>>
>>> @staticmethod
>>> def backward(ctx, grad_output):
>>> result, = ctx.saved_tensors
>>> return grad_output * result
>>>
>>> #Use it by calling the apply method:
>>> output = Exp.apply(input)
mish
[source]
mish
(x
)
class
Mish
[source]
Mish
() ::Module
Same as nn.Module
, but no need for subclasses to call super().__init__
Helper functions for submodules
It’s easy to get the list of all parameters of a given model. For when you want all submodules (like linear/conv layers) without forgetting lone parameters, the following class wraps those in fake modules.
class
ParameterModule
[source]
ParameterModule
(p
) ::Module
Register a lone parameter p
in a module.
children_and_parameters
[source]
children_and_parameters
(m
)
Return the children of m
and its direct parameters not registered in modules.
class TstModule(Module):
def __init__(self): self.a,self.lin = nn.Parameter(torch.randn(1)),nn.Linear(5,10)
tst = TstModule()
children = children_and_parameters(tst)
test_eq(len(children), 2)
test_eq(children[0], tst.lin)
assert isinstance(children[1], ParameterModule)
test_eq(children[1].val, tst.a)
has_children
[source]
has_children
(m
)
class A(Module): pass
assert not has_children(A())
assert has_children(TstModule())
flatten_model
[source]
flatten_model
(m
)
Return the list of all submodules and parameters of m
tst = nn.Sequential(TstModule(), TstModule())
children = flatten_model(tst)
test_eq(len(children), 4)
assert isinstance(children[1], ParameterModule)
assert isinstance(children[3], ParameterModule)
class
NoneReduce
[source]
NoneReduce
(loss_func
)
A context manager to evaluate loss_func
with none reduce.
x,y = torch.randn(5),torch.randn(5)
loss_fn = nn.MSELoss()
with NoneReduce(loss_fn) as loss_func:
loss = loss_func(x,y)
test_eq(loss.shape, [5])
test_eq(loss_fn.reduction, 'mean')
loss_fn = F.mse_loss
with NoneReduce(loss_fn) as loss_func:
loss = loss_func(x,y)
test_eq(loss.shape, [5])
test_eq(loss_fn, F.mse_loss)
in_channels
[source]
in_channels
(m
)
Return the shape of the first weight layer in m
.
test_eq(in_channels(nn.Sequential(nn.Conv2d(5,4,3), nn.Conv2d(4,3,3))), 5)
test_eq(in_channels(nn.Sequential(nn.AvgPool2d(4), nn.Conv2d(4,3,3))), 4)
test_eq(in_channels(nn.Sequential(BatchNorm(4), nn.Conv2d(4,3,3))), 4)
test_eq(in_channels(nn.Sequential(InstanceNorm(4), nn.Conv2d(4,3,3))), 4)
test_eq(in_channels(nn.Sequential(InstanceNorm(4, affine=False), nn.Conv2d(4,3,3))), 4)
test_fail(lambda : in_channels(nn.Sequential(nn.AvgPool2d(4))))
©2021 fast.ai. All rights reserved.
Site last generated: Mar 31, 2021