- Deploying a smart contract to a channel
Deploying a smart contract to a channel
End users interact with the blockchain ledger by invoking smart contracts. In Hyperledger Fabric, smart contracts are deployed in packages referred to as chaincode. Organizations that want to validate transactions or query the ledger need to install a chaincode on their peers. After a chaincode has been installed on the peers joined to a channel, channel members can deploy the chaincode to the channel and use the smart contracts in the chaincode to create or update assets on the channel ledger.
A chaincode is deployed to a channel using a process known as the Fabric chaincode lifecycle. The Fabric chaincode lifecycle allows multiple organizations to agree how a chaincode will be operated before it can be used to create transactions. For example, while an endorsement policy specifies which organizations need to execute a chaincode to validate a transaction, channel members need to use the Fabric chaincode lifecycle to agree on the chaincode endorsement policy. For a more in-depth overview about how to deploy and manage a chaincode on a channel, see Fabric chaincode lifecycle.
You can use this tutorial to learn how to use the peer lifecycle chaincode commands to deploy a chaincode to a channel of the Fabric test network. Once you have an understanding of the commands, you can use the steps in this tutorial to deploy your own chaincode to the test network, or to deploy chaincode to a production network. In this tutorial, you will deploy the asset-transfer (basic) chaincode that is used by the Running a Fabric Application tutorial.
Note: These instructions use the Fabric chaincode lifecycle introduced in the v2.0 release. If you would like to use the previous lifecycle to install and instantiate a chaincode, visit the v1.4 version of the Fabric documentation.
Start the network
We will start by deploying an instance of the Fabric test network. Before you begin, make sure that you have installed the necessary software by following the instructions on getting_started. Use the following command to navigate to the test network directory within your local clone of the fabric-samples
repository:
cd fabric-samples/test-network
For the sake of this tutorial, we want to operate from a known initial state. The following command will kill any active or stale docker containers and remove previously generated artifacts.
./network.sh down
You can then use the following command to start the test network:
./network.sh up createChannel
The createChannel
command creates a channel named mychannel
with two channel members, Org1 and Org2. The command also joins a peer that belongs to each organization to the channel. If the network and the channel are created successfully, you can see the following message printed in the logs:
========= Channel successfully joined ===========
We can now use the Peer CLI to deploy the asset-transfer (basic) chaincode to the channel using the following steps:
Setup Logspout (optional)
This step is not required but is extremely useful for troubleshooting chaincode. To monitor the logs of the smart contract, an administrator can view the aggregated output from a set of Docker containers using the logspout
tool. The tool collects the output streams from different Docker containers into one place, making it easy to see what’s happening from a single window. This can help administrators debug problems when they install smart contracts or developers when they invoke smart contracts. Because some containers are created purely for the purposes of starting a smart contract and only exist for a short time, it is helpful to collect all of the logs from your network.
A script to install and configure Logspout, monitordocker.sh
, is already included in the test-network
directory in the Fabric samples. The Logspout tool will continuously stream logs to your terminal, so you will need to use a new terminal window. Open a new terminal and navigate to the test-network
directory.
cd fabric-samples/test-network
You can then start Logspout by running the following command:
./monitordocker.sh fabric_test
You should see output similar to the following:
Starting monitoring on all containers on the network net_basic
Unable to find image 'gliderlabs/logspout:latest' locally
latest: Pulling from gliderlabs/logspout
4fe2ade4980c: Pull complete
decca452f519: Pull complete
ad60f6b6c009: Pull complete
Digest: sha256:374e06b17b004bddc5445525796b5f7adb8234d64c5c5d663095fccafb6e4c26
Status: Downloaded newer image for gliderlabs/logspout:latest
1f99d130f15cf01706eda3e1f040496ec885036d485cb6bcc0da4a567ad84361
You will not see any logs at first, but this will change when we deploy our chaincode. It can be helpful to make this terminal window wide and the font small.
Package the smart contract
We need to package the chaincode before it can be installed on our peers. The steps are different if you want to install a smart contract written in Go, JavaScript, or Typescript.
Go
Before we package the chaincode, we need to install the chaincode dependencies. Navigate to the folder that contains the Go version of the asset-transfer (basic) chaincode.
cd fabric-samples/asset-transfer-basic/chaincode-go
The sample uses a Go module to install the chaincode dependencies. The dependencies are listed in a go.mod
file in the asset-transfer-basic/chaincode-go
directory. You should take a moment to examine this file.
$ cat go.mod
module github.com/hyperledger/fabric-samples/asset-transfer-basic/chaincode-go
go 1.14
require (
github.com/golang/protobuf v1.3.2
github.com/hyperledger/fabric-chaincode-go v0.0.0-20200424173110-d7076418f212
github.com/hyperledger/fabric-contract-api-go v1.1.0
github.com/hyperledger/fabric-protos-go v0.0.0-20200424173316-dd554ba3746e
github.com/stretchr/testify v1.5.1
)
The go.mod
file imports the Fabric contract API into the smart contract package. You can open asset-transfer-basic/chaincode-go/chaincode/smartcontract.go
in a text editor to see how the contract API is used to define the SmartContract
type at the beginning of the smart contract:
// SmartContract provides functions for managing an Asset
type SmartContract struct {
contractapi.Contract
}
The SmartContract
type is then used to create the transaction context for the functions defined within the smart contract that read and write data to the blockchain ledger.
// CreateAsset issues a new asset to the world state with given details.
func (s *SmartContract) CreateAsset(ctx contractapi.TransactionContextInterface, id string, color string, size int, owner string, appraisedValue int) error {
exists, err := s.AssetExists(ctx, id)
if err != nil {
return err
}
if exists {
return fmt.Errorf("the asset %s already exists", id)
}
asset := Asset{
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedValue,
}
assetJSON, err := json.Marshal(asset)
if err != nil {
return err
}
return ctx.GetStub().PutState(id, assetJSON)
}
You can learn more about the Go contract API by visiting the API documentation and the smart contract processing topic.
To install the smart contract dependencies, run the following command from the asset-transfer-basic/chaincode-go
directory.
GO111MODULE=on go mod vendor
If the command is successful, the go packages will be installed inside a vendor
folder.
Now that we that have our dependencies, we can create the chaincode package. Navigate back to our working directory in the test-network
folder so that we can package the chaincode together with our other network artifacts.
cd ../../test-network
You can use the peer
CLI to create a chaincode package in the required format. The peer
binaries are located in the bin
folder of the fabric-samples
repository. Use the following command to add those binaries to your CLI Path:
export PATH=${PWD}/../bin:$PATH
You also need to set the FABRIC_CFG_PATH
to point to the core.yaml
file in the fabric-samples
repository:
export FABRIC_CFG_PATH=$PWD/../config/
To confirm that you are able to use the peer
CLI, check the version of the binaries. The binaries need to be version 2.0.0
or later to run this tutorial.
peer version
You can now create the chaincode package using the peer lifecycle chaincode package command:
peer lifecycle chaincode package basic.tar.gz --path ../asset-transfer-basic/chaincode-go/ --lang golang --label basic_1.0
This command will create a package named basic.tar.gz
in your current directory. The --lang
flag is used to specify the chaincode language and the --path
flag provides the location of your smart contract code. The path must be a fully qualified path or a path relative to your present working directory. The --label
flag is used to specify a chaincode label that will identify your chaincode after it is installed. It is recommended that your label include the chaincode name and version.
Now that we created the chaincode package, we can install the chaincode on the peers of the test network.
JavaScript
Before we package the chaincode, we need to install the chaincode dependencies. Navigate to the folder that contains the JavaScript version of the asset-transfer (basic) chaincode.
cd fabric-samples/asset-transfer-basic/chaincode-javascript
The dependencies are listed in the package.json
file in the asset-transfer-basic/chaincode-javascript
directory. You should take a moment to examine this file. You can find the dependencies section displayed below:
"dependencies": {
"fabric-contract-api": "^2.0.0",
"fabric-shim": "^2.0.0"
The package.json
file imports the Fabric contract class into the smart contract package. You can open lib/assetTransfer.js
in a text editor to see the contract class imported into the smart contract and used to create the asset-transfer (basic) class.
const { Contract } = require('fabric-contract-api');
class AssetTransfer extends Contract {
...
}
The AssetTransfer
class provides the transaction context for the functions defined within the smart contract that read and write data to the blockchain ledger.
async CreateAsset(ctx, id, color, size, owner, appraisedValue) {
const asset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedValue,
};
await ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}
You can learn more about the JavaScript contract API by visiting the API documentation and the smart contract processing topic.
To install the smart contract dependencies, run the following command from the asset-transfer-basic/chaincode-javascript
directory.
npm install
If the command is successful, the JavaScript packages will be installed inside a node_modules
folder.
Now that we that have our dependencies, we can create the chaincode package. Navigate back to our working directory in the test-network
folder so that we can package the chaincode together with our other network artifacts.
cd ../../test-network
You can use the peer
CLI to create a chaincode package in the required format. The peer
binaries are located in the bin
folder of the fabric-samples
repository. Use the following command to add those binaries to your CLI Path:
export PATH=${PWD}/../bin:$PATH
You also need to set the FABRIC_CFG_PATH
to point to the core.yaml
file in the fabric-samples
repository:
export FABRIC_CFG_PATH=$PWD/../config/
To confirm that you are able to use the peer
CLI, check the version of the binaries. The binaries need to be version 2.0.0
or later to run this tutorial.
peer version
You can now create the chaincode package using the peer lifecycle chaincode package command:
peer lifecycle chaincode package basic.tar.gz --path ../asset-transfer-basic/chaincode-javascript/ --lang node --label basic_1.0
This command will create a package named basic.tar.gz
in your current directory. The --lang
flag is used to specify the chaincode language and the --path
flag provides the location of your smart contract code. The --label
flag is used to specify a chaincode label that will identify your chaincode after it is installed. It is recommended that your label include the chaincode name and version.
Now that we created the chaincode package, we can install the chaincode on the peers of the test network.
Typescript
Before we package the chaincode, we need to install the chaincode dependencies. Navigate to the folder that contains the TypeScript version of the asset-transfer (basic) chaincode.
cd fabric-samples/asset-transfer-basic/chaincode-typescript
The dependencies are listed in the package.json
file in the asset-transfer-basic/chaincode-typescript
directory. You should take a moment to examine this file. You can find the dependencies section displayed below:
"dependencies": {
"fabric-contract-api": "^2.0.0",
"fabric-shim": "^2.0.0"
The package.json
file imports the Fabric contract class into the smart contract package. You can open src/assetTransfer.ts
in a text editor to see the contract class imported into the smart contract and used to create the asset-transfer (basic) class. Also notice that the Asset class is imported from the type definition file asset.ts
.
import { Context, Contract } from 'fabric-contract-api';
import { Asset } from './asset';
export class AssetTransfer extends Contract {
...
}
The AssetTransfer
class provides the transaction context for the functions defined within the smart contract that read and write data to the blockchain ledger.
// CreateAsset issues a new asset to the world state with given details.
public async CreateAsset(ctx: Context, id: string, color: string, size: number, owner: string, appraisedValue: number) {
const asset = {
ID: id,
Color: color,
Size: size,
Owner: owner,
AppraisedValue: appraisedValue,
};
await ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}
You can learn more about the JavaScript contract API by visiting the API documentation and the smart contract processing topic.
To install the smart contract dependencies, run the following command from the asset-transfer-basic/chaincode-typescript
directory.
npm install
If the command is successful, the JavaScript packages will be installed inside a node_modules
folder.
Now that we that have our dependencies, we can create the chaincode package. Navigate back to our working directory in the test-network
folder so that we can package the chaincode together with our other network artifacts.
cd ../../test-network
You can use the peer
CLI to create a chaincode package in the required format. The peer
binaries are located in the bin
folder of the fabric-samples
repository. Use the following command to add those binaries to your CLI Path:
export PATH=${PWD}/../bin:$PATH
You also need to set the FABRIC_CFG_PATH
to point to the core.yaml
file in the fabric-samples
repository:
export FABRIC_CFG_PATH=$PWD/../config/
To confirm that you are able to use the peer
CLI, check the version of the binaries. The binaries need to be version 2.0.0
or later to run this tutorial.
peer version
You can now create the chaincode package using the peer lifecycle chaincode package command:
peer lifecycle chaincode package basic.tar.gz --path ../asset-transfer-basic/chaincode-typescript/ --lang node --label basic_1.0
This command will create a package named basic.tar.gz
in your current directory. The --lang
flag is used to specify the chaincode language and the --path
flag provides the location of your smart contract code. The --label
flag is used to specify a chaincode label that will identify your chaincode after it is installed. It is recommended that your label include the chaincode name and version.
Now that we created the chaincode package, we can install the chaincode on the peers of the test network.
Install the chaincode package
After we package the asset-transfer (basic) smart contract, we can install the chaincode on our peers. The chaincode needs to be installed on every peer that will endorse a transaction. Because we are going to set the endorsement policy to require endorsements from both Org1 and Org2, we need to install the chaincode on the peers operated by both organizations:
peer0.org1.example.com
peer0.org2.example.com
Let’s install the chaincode on the Org1 peer first. Set the following environment variables to operate the peer
CLI as the Org1 admin user. The CORE_PEER_ADDRESS
will be set to point to the Org1 peer, peer0.org1.example.com
.
export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051
Issue the peer lifecycle chaincode install command to install the chaincode on the peer:
peer lifecycle chaincode install basic.tar.gz
If the command is successful, the peer will generate and return the package identifier. This package ID will be used to approve the chaincode in the next step. You should see output similar to the following:
2020-07-16 10:09:57.534 CDT [cli.lifecycle.chaincode] submitInstallProposal -> INFO 001 Installed remotely: response:<status:200 payload:"\nJbasic_1.0:e2db7f693d4aa6156e652741d5606e9c5f0de9ebb88c5721cb8248c3aead8123\022\tbasic_1.0" >
2020-07-16 10:09:57.534 CDT [cli.lifecycle.chaincode] submitInstallProposal -> INFO 002 Chaincode code package identifier: basic_1.0:e2db7f693d4aa6156e652741d5606e9c5f0de9ebb88c5721cb8248c3aead8123
We can now install the chaincode on the Org2 peer. Set the following environment variables to operate as the Org2 admin and target the Org2 peer, peer0.org2.example.com
.
export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051
Issue the following command to install the chaincode:
peer lifecycle chaincode install basic.tar.gz
The chaincode is built by the peer when the chaincode is installed. The install command will return any build errors from the chaincode if there is a problem with the smart contract code.
Approve a chaincode definition
After you install the chaincode package, you need to approve a chaincode definition for your organization. The definition includes the important parameters of chaincode governance such as the name, version, and the chaincode endorsement policy.
The set of channel members who need to approve a chaincode before it can be deployed is governed by the /Channel/Application/LifecycleEndorsement
policy. By default, this policy requires that a majority of channel members need to approve a chaincode before it can be used on a channel. Because we have only two organizations on the channel, and a majority of 2 is 2, we need approve a chaincode definition of asset-transfer (basic) as Org1 and Org2.
If an organization has installed the chaincode on their peer, they need to include the packageID in the chaincode definition approved by their organization. The package ID is used to associate the chaincode installed on a peer with an approved chaincode definition, and allows an organization to use the chaincode to endorse transactions. You can find the package ID of a chaincode by using the peer lifecycle chaincode queryinstalled command to query your peer.
peer lifecycle chaincode queryinstalled
The package ID is the combination of the chaincode label and a hash of the chaincode binaries. Every peer will generate the same package ID. You should see output similar to the following:
Installed chaincodes on peer:
Package ID: basic_1.0:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3, Label: basic_1.0
We are going to use the package ID when we approve the chaincode, so let’s go ahead and save it as an environment variable. Paste the package ID returned by peer lifecycle chaincode queryinstalled
into the command below. Note: The package ID will not be the same for all users, so you need to complete this step using the package ID returned from your command window in the previous step.
export CC_PACKAGE_ID=basic_1.0:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3
Because the environment variables have been set to operate the peer
CLI as the Org2 admin, we can approve the chaincode definition of asset-transfer (basic) as Org2. Chaincode is approved at the organization level, so the command only needs to target one peer. The approval is distributed to the other peers within the organization using gossip. Approve the chaincode definition using the peer lifecycle chaincode approveformyorg command:
peer lifecycle chaincode approveformyorg -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name basic --version 1.0 --package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
The command above uses the --package-id
flag to include the package identifier in the chaincode definition. The --sequence
parameter is an integer that keeps track of the number of times a chaincode has been defined or updated. Because the chaincode is being deployed to the channel for the first time, the sequence number is 1. When the asset-transfer (basic) chaincode is upgraded, the sequence number will be incremented to 2. If you are using the low level APIs provided by the Fabric Chaincode Shim API, you could pass the --init-required
flag to the command above to request the execution of the Init function to initialize the chaincode. The first invoke of the chaincode would need to target the Init function and include the --isInit
flag before you could use the other functions in the chaincode to interact with the ledger.
We could have provided a --signature-policy
or --channel-config-policy
argument to the approveformyorg
command to specify a chaincode endorsement policy. The endorsement policy specifies how many peers belonging to different channel members need to validate a transaction against a given chaincode. Because we did not set a policy, the definition of asset-transfer (basic) will use the default endorsement policy, which requires that a transaction be endorsed by a majority of channel members present when the transaction is submitted. This implies that if new organizations are added or removed from the channel, the endorsement policy is updated automatically to require more or fewer endorsements. In this tutorial, the default policy will require a majority of 2 out of 2 and transactions will need to be endorsed by a peer from Org1 and Org2. If you want to specify a custom endorsement policy, you can use the Endorsement Policies operations guide to learn about the policy syntax.
You need to approve a chaincode definition with an identity that has an admin role. As a result, the CORE_PEER_MSPCONFIGPATH
variable needs to point to the MSP folder that contains an admin identity. You cannot approve a chaincode definition with a client user. The approval needs to be submitted to the ordering service, which will validate the admin signature and then distribute the approval to your peers.
We still need to approve the chaincode definition as Org1. Set the following environment variables to operate as the Org1 admin:
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_ADDRESS=localhost:7051
You can now approve the chaincode definition as Org1.
peer lifecycle chaincode approveformyorg -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name basic --version 1.0 --package-id $CC_PACKAGE_ID --sequence 1 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
We now have the majority we need to deploy the asset-transfer (basic) the chaincode to the channel. While only a majority of organizations need to approve a chaincode definition (with the default policies), all organizations need to approve a chaincode definition to start the chaincode on their peers. If you commit the definition before a channel member has approved the chaincode, the organization will not be able to endorse transactions. As a result, it is recommended that all channel members approve a chaincode before committing the chaincode definition.
Committing the chaincode definition to the channel
After a sufficient number of organizations have approved a chaincode definition, one organization can commit the chaincode definition to the channel. If a majority of channel members have approved the definition, the commit transaction will be successful and the parameters agreed to in the chaincode definition will be implemented on the channel.
You can use the peer lifecycle chaincode checkcommitreadiness command to check whether channel members have approved the same chaincode definition. The flags used for the checkcommitreadiness
command are identical to the flags used to approve a chaincode for your organization. However, you do not need to include the --package-id
flag.
peer lifecycle chaincode checkcommitreadiness --channelID mychannel --name basic --version 1.0 --sequence 1 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" --output json
The command will produce a JSON map that displays if a channel member has approved the parameters that were specified in the checkcommitreadiness
command:
{
"Approvals": {
"Org1MSP": true,
"Org2MSP": true
}
}
Since both organizations that are members of the channel have approved the same parameters, the chaincode definition is ready to be committed to the channel. You can use the peer lifecycle chaincode commit command to commit the chaincode definition to the channel. The commit command also needs to be submitted by an organization admin.
peer lifecycle chaincode commit -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name basic --version 1.0 --sequence 1 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" --peerAddresses localhost:7051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt" --peerAddresses localhost:9051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt"
The transaction above uses the --peerAddresses
flag to target peer0.org1.example.com
from Org1 and peer0.org2.example.com
from Org2. The commit
transaction is submitted to the peers joined to the channel to query the chaincode definition that was approved by the organization that operates the peer. The command needs to target the peers from a sufficient number of organizations to satisfy the policy for deploying a chaincode. Because the approval is distributed within each organization, you can target any peer that belongs to a channel member.
The chaincode definition endorsements by channel members are submitted to the ordering service to be added to a block and distributed to the channel. The peers on the channel then validate whether a sufficient number of organizations have approved the chaincode definition. The peer lifecycle chaincode commit
command will wait for the validations from the peer before returning a response.
You can use the peer lifecycle chaincode querycommitted command to confirm that the chaincode definition has been committed to the channel.
peer lifecycle chaincode querycommitted --channelID mychannel --name basic --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
If the chaincode was successful committed to the channel, the querycommitted
command will return the sequence and version of the chaincode definition:
Committed chaincode definition for chaincode 'basic' on channel 'mychannel':
Version: 1.0, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc, Approvals: [Org1MSP: true, Org2MSP: true]
Invoking the chaincode
After the chaincode definition has been committed to a channel, the chaincode will start on the peers joined to the channel where the chaincode was installed. The asset-transfer (basic) chaincode is now ready to be invoked by client applications. Use the following command to create an initial set of assets on the ledger. Note that the invoke command needs to target a sufficient number of peers to meet the chaincode endorsement policy. (Note the CLI does not access the Fabric Gateway peer, so each endorsing peer must be specified.)
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" -C mychannel -n basic --peerAddresses localhost:7051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt" --peerAddresses localhost:9051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt" -c '{"function":"InitLedger","Args":[]}'
If the command is successful, you should see a response similar to the following:
2020-02-12 18:22:20.576 EST [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 001 Chaincode invoke successful. result: status:200
We can use a query function to read the set of cars that were created by the chaincode:
peer chaincode query -C mychannel -n basic -c '{"Args":["GetAllAssets"]}'
The response to the query should be the following list of assets:
[{"Key":"asset1","Record":{"ID":"asset1","color":"blue","size":5,"owner":"Tomoko","appraisedValue":300}},
{"Key":"asset2","Record":{"ID":"asset2","color":"red","size":5,"owner":"Brad","appraisedValue":400}},
{"Key":"asset3","Record":{"ID":"asset3","color":"green","size":10,"owner":"Jin Soo","appraisedValue":500}},
{"Key":"asset4","Record":{"ID":"asset4","color":"yellow","size":10,"owner":"Max","appraisedValue":600}},
{"Key":"asset5","Record":{"ID":"asset5","color":"black","size":15,"owner":"Adriana","appraisedValue":700}},
{"Key":"asset6","Record":{"ID":"asset6","color":"white","size":15,"owner":"Michel","appraisedValue":800}}]
Upgrading a smart contract
You can use the same Fabric chaincode lifecycle process to upgrade a chaincode that has already been deployed to a channel. Channel members can upgrade a chaincode by installing a new chaincode package and then approving a chaincode definition with the new package ID, a new chaincode version, and with the sequence number incremented by one. The new chaincode can be used after the chaincode definition is committed to the channel. This process allows channel members to coordinate on when a chaincode is upgraded, and ensure that a sufficient number of channel members are ready to use the new chaincode before it is deployed to the channel.
Channel members can also use the upgrade process to change the chaincode endorsement policy. By approving a chaincode definition with a new endorsement policy and committing the chaincode definition to the channel, channel members can change the endorsement policy governing a chaincode without installing a new chaincode package.
To provide a scenario for upgrading the asset-transfer (basic) chaincode that we just deployed, let’s assume that Org1 and Org2 would like to install a version of the chaincode that is written in another language. They will use the Fabric chaincode lifecycle to update the chaincode version and ensure that both organizations have installed the new chaincode before it becomes active on the channel.
We are going to assume that Org1 and Org2 initially installed the GO version of the asset-transfer (basic) chaincode, but would be more comfortable working with a chaincode written in JavaScript. The first step is to package the JavaScript version of the asset-transfer (basic) chaincode. If you used the JavaScript instructions to package your chaincode when you went through the tutorial, you can install new chaincode binaries by following the steps for packaging a chaincode written in Go or TypeScript.
Issue the following commands from the test-network
directory to install the chaincode dependencies.
cd ../asset-transfer-basic/chaincode-javascript
npm install
cd ../../test-network
You can then issue the following commands to package the JavaScript chaincode from the test-network
directory. We will set the environment variables needed to use the peer
CLI again in case you closed your terminal.
export PATH=${PWD}/../bin:$PATH
export FABRIC_CFG_PATH=$PWD/../config/
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
peer lifecycle chaincode package basic_2.tar.gz --path ../asset-transfer-basic/chaincode-javascript/ --lang node --label basic_2.0
Run the following commands to operate the peer
CLI as the Org1 admin:
export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=localhost:7051
We can now use the following command to install the new chaincode package on the Org1 peer.
peer lifecycle chaincode install basic_2.tar.gz
The new chaincode package will create a new package ID. We can find the new package ID by querying our peer.
peer lifecycle chaincode queryinstalled
The queryinstalled
command will return a list of the chaincode that have been installed on your peer similar to this output.
Installed chaincodes on peer:
Package ID: basic_1.0:69de748301770f6ef64b42aa6bb6cb291df20aa39542c3ef94008615704007f3, Label: basic_1.0
Package ID: basic_2.0:1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4, Label: basic_2.0
You can use the package label to find the package ID of the new chaincode and save it as a new environment variable. This output is for example only – your package ID will be different, so DO NOT COPY AND PASTE!
export NEW_CC_PACKAGE_ID=basic_2.0:1d559f9fb3dd879601ee17047658c7e0c84eab732dca7c841102f20e42a9e7d4
Org1 can now approve a new chaincode definition:
peer lifecycle chaincode approveformyorg -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name basic --version 2.0 --package-id $NEW_CC_PACKAGE_ID --sequence 2 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
The new chaincode definition uses the package ID of the JavaScript chaincode package and updates the chaincode version. Because the sequence parameter is used by the Fabric chaincode lifecycle to keep track of chaincode upgrades, Org1 also needs to increment the sequence number from 1 to 2. You can use the peer lifecycle chaincode querycommitted command to find the sequence of the chaincode that was last committed to the channel.
We now need to install the chaincode package and approve the chaincode definition as Org2 in order to upgrade the chaincode. Run the following commands to operate the peer
CLI as the Org2 admin:
export CORE_PEER_LOCALMSPID="Org2MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=${PWD}/organizations/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp
export CORE_PEER_ADDRESS=localhost:9051
We can now use the following command to install the new chaincode package on the Org2 peer.
peer lifecycle chaincode install basic_2.tar.gz
You can now approve the new chaincode definition for Org2.
peer lifecycle chaincode approveformyorg -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name basic --version 2.0 --package-id $NEW_CC_PACKAGE_ID --sequence 2 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
Use the peer lifecycle chaincode checkcommitreadiness command to check if the chaincode definition with sequence 2 is ready to be committed to the channel:
peer lifecycle chaincode checkcommitreadiness --channelID mychannel --name basic --version 2.0 --sequence 2 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" --output json
The chaincode is ready to be upgraded if the command returns the following JSON:
{
"Approvals": {
"Org1MSP": true,
"Org2MSP": true
}
}
The chaincode will be upgraded on the channel after the new chaincode definition is committed. Until then, the previous chaincode will continue to run on the peers of both organizations. Org2 can use the following command to upgrade the chaincode:
peer lifecycle chaincode commit -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --channelID mychannel --name basic --version 2.0 --sequence 2 --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" --peerAddresses localhost:7051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt" --peerAddresses localhost:9051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt"
A successful commit transaction will start the new chaincode right away. If the chaincode definition changed the endorsement policy, the new policy would be put in effect.
You can use the docker ps
command to verify that the new chaincode has started on your peers:
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
7bf2f1bf792b dev-peer0.org1.example.com-basic_2.0-572cafd6a972a9b6aa3fa4f6a944efb6648d363c0ba4602f56bc8b3f9e66f46c-69c9e3e44ed18cafd1e58de37a70e2ec54cd49c7da0cd461fbd5e333de32879b "docker-entrypoint.s…" 2 minutes ago Up 2 minutes dev-peer0.org1.example.com-basic_2.0-572cafd6a972a9b6aa3fa4f6a944efb6648d363c0ba4602f56bc8b3f9e66f46c
985e0967c27a dev-peer0.org2.example.com-basic_2.0-572cafd6a972a9b6aa3fa4f6a944efb6648d363c0ba4602f56bc8b3f9e66f46c-158e9c6a4cb51dea043461fc4d3580e7df4c74a52b41e69a25705ce85405d760 "docker-entrypoint.s…" 2 minutes ago Up 2 minutes dev-peer0.org2.example.com-basic_2.0-572cafd6a972a9b6aa3fa4f6a944efb6648d363c0ba4602f56bc8b3f9e66f46c
31fdd19c3be7 hyperledger/fabric-peer:latest "peer node start" About an hour ago Up About an hour 0.0.0.0:7051->7051/tcp peer0.org1.example.com
1b17ff866fe0 hyperledger/fabric-peer:latest "peer node start" About an hour ago Up About an hour 7051/tcp, 0.0.0.0:9051->9051/tcp peer0.org2.example.com
4cf170c7ae9b hyperledger/fabric-orderer:latest
If you used the --init-required
flag, you need to invoke the Init function before you can use the upgraded chaincode. Because we did not request the execution of Init, we can test our new JavaScript chaincode by creating a new car:
peer chaincode invoke -o localhost:7050 --ordererTLSHostnameOverride orderer.example.com --tls --cafile "${PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" -C mychannel -n basic --peerAddresses localhost:7051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt" --peerAddresses localhost:9051 --tlsRootCertFiles "${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt" -c '{"function":"CreateAsset","Args":["asset8","blue","16","Kelley","750"]}'
You can query all the cars on the ledger again to see the new car:
peer chaincode query -C mychannel -n basic -c '{"Args":["GetAllAssets"]}'
You should see the following result from the JavaScript chaincode:
[{"Key":"asset1","Record":{"ID":"asset1","color":"blue","size":5,"owner":"Tomoko","appraisedValue":300}},
{"Key":"asset2","Record":{"ID":"asset2","color":"red","size":5,"owner":"Brad","appraisedValue":400}},
{"Key":"asset3","Record":{"ID":"asset3","color":"green","size":10,"owner":"Jin Soo","appraisedValue":500}},
{"Key":"asset4","Record":{"ID":"asset4","color":"yellow","size":10,"owner":"Max","appraisedValue":600}},
{"Key":"asset5","Record":{"ID":"asset5","color":"black","size":15,"owner":"Adriana","appraisedValue":700}},
{"Key":"asset6","Record":{"ID":"asset6","color":"white","size":15,"owner":"Michel","appraisedValue":800}},
"Key":"asset8","Record":{"ID":"asset8","color":"blue","size":16,"owner":"Kelley","appraisedValue":750}}]
Clean up
When you are finished using the chaincode, you can also use the following commands to remove the Logspout tool.
docker stop logspout
docker rm logspout
You can then bring down the test network by issuing the following command from the test-network
directory:
./network.sh down
Next steps
After you write your smart contract and deploy it to a channel, you can use the APIs provided by the Fabric SDKs to invoke the smart contracts from a client application. This allows end users to interact with the assets on the blockchain ledger. To get started with the Fabric SDKs, see the Running a Fabric Application tutorial.
troubleshooting
Chaincode not agreed to by this org
Problem: When I try to commit a new chaincode definition to the channel, the peer lifecycle chaincode commit
command fails with the following error:
Error: failed to create signed transaction: proposal response was not successful, error code 500, msg failed to invoke backing implementation of 'CommitChaincodeDefinition': chaincode definition not agreed to by this org (Org1MSP)
Solution: You can try to resolve this error by using the peer lifecycle chaincode checkcommitreadiness
command to check which channel members have approved the chaincode definition that you are trying to commit. If any organization used a different value for any parameter of the chaincode definition, the commit transaction will fail. The peer lifecycle chaincode checkcommitreadiness
will reveal which organizations did not approve the chaincode definition you are trying to commit:
{
"approvals": {
"Org1MSP": false,
"Org2MSP": true
}
}
Invoke failure
Problem: The peer lifecycle chaincode commit
transaction is successful, but when I try to invoke the chaincode for the first time, it fails with the following error:
Error: endorsement failure during invoke. response: status:500 message:"make sure the chaincode asset-transfer (basic) has been successfully defined on channel mychannel and try again: chaincode definition for 'asset-transfer (basic)' exists, but chaincode is not installed"
Solution: You may not have set the correct --package-id
when you approved your chaincode definition. As a result, the chaincode definition that was committed to the channel was not associated with the chaincode package you installed and the chaincode was not started on your peers. If you are running a docker based network, you can use the docker ps
command to check if your chaincode is running:
docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
7fe1ae0a69fa hyperledger/fabric-orderer:latest "orderer" 5 minutes ago Up 4 minutes 0.0.0.0:7050->7050/tcp orderer.example.com
2b9c684bd07e hyperledger/fabric-peer:latest "peer node start" 5 minutes ago Up 4 minutes 0.0.0.0:7051->7051/tcp peer0.org1.example.com
39a3e41b2573 hyperledger/fabric-peer:latest "peer node start" 5 minutes ago Up 4 minutes 7051/tcp, 0.0.0.0:9051->9051/tcp peer0.org2.example.com
If you do not see any chaincode containers listed, use the peer lifecycle chaincode approveformyorg
command approve a chaincode definition with the correct package ID.
Endorsement policy failure
Problem: When I try to commit the chaincode definition to the channel, the transaction fails with the following error:
2020-04-07 20:08:23.306 EDT [chaincodeCmd] ClientWait -> INFO 001 txid [5f569e50ae58efa6261c4ad93180d49ac85ec29a07b58f576405b826a8213aeb] committed with status (ENDORSEMENT_POLICY_FAILURE) at localhost:7051
Error: transaction invalidated with status (ENDORSEMENT_POLICY_FAILURE)
Solution: This error is a result of the commit transaction not gathering enough endorsements to meet the Lifecycle endorsement policy. This problem could be a result of your transaction not targeting a sufficient number of peers to meet the policy. This could also be the result of some of the peer organizations not including the Endorsement:
signature policy referenced by the default /Channel/Application/Endorsement
policy in their configtx.yaml
file:
Readers:
Type: Signature
Rule: "OR('Org2MSP.admin', 'Org2MSP.peer', 'Org2MSP.client')"
Writers:
Type: Signature
Rule: "OR('Org2MSP.admin', 'Org2MSP.client')"
Admins:
Type: Signature
Rule: "OR('Org2MSP.admin')"
Endorsement:
Type: Signature
Rule: "OR('Org2MSP.peer')"
When you enable the Fabric chaincode lifecycle, you also need to use the new Fabric 2.0 channel policies in addition to upgrading your channel to the V2_0
capability. Your channel needs to include the new /Channel/Application/LifecycleEndorsement
and /Channel/Application/Endorsement
policies:
Policies:
Readers:
Type: ImplicitMeta
Rule: "ANY Readers"
Writers:
Type: ImplicitMeta
Rule: "ANY Writers"
Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins"
LifecycleEndorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"
Endorsement:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement"
If you do not include the new channel policies in the channel configuration, you will get the following error when you approve a chaincode definition for your organization:
Error: proposal failed with status: 500 - failed to invoke backing implementation of 'ApproveChaincodeDefinitionForMyOrg': could not set defaults for chaincode definition in channel mychannel: policy '/Channel/Application/Endorsement' must be defined for channel 'mychannel' before chaincode operations can be attempted