Transaction Propagation
The Ethereum network uses a “flood routing” protocol. Each Ethereum client acts as a node in a peer-to-peer (P2P) network, which (ideally) forms a mesh network. No network node is special: they all act as equal peers. We will use the term “node” to refer to an Ethereum client that is connected to and participates in the P2P network.
Transaction propagation starts with the originating Ethereum node creating (or receiving from offline) a signed transaction. The transaction is validated and then transmitted to all the other Ethereum nodes that are directly connected to the originating node. On average, each Ethereum node maintains connections to at least 13 other nodes, called its neighbors. Each neighbor node validates the transaction as soon as they receive it. If they agree that it is valid, they store a copy and propagate it to all their neighbors (except the one it came from). As a result, the transaction ripples outwards from the originating node, flooding across the network, until all nodes in the network have a copy of the transaction. Nodes can filter the messages they propagate, but the default is to propagate all valid transaction messages they receive.
Within just a few seconds, an Ethereum transaction propagates to all the Ethereum nodes around the globe. From the perspective of each node, it is not possible to discern the origin of the transaction. The neighbor that sent it to the node may be the originator of the transaction or may have received it from one of its neighbors. To be able to track the origins of transactions, or interfere with propagation, an attacker would have to control a significant percentage of all nodes. This is part of the security and privacy design of P2P networks, especially as applied to blockchain networks.