Guarded Blocks
多线程之间经常需要协同工作,最常见的方式是使用 Guarded Blocks,它循环检查一个条件(通常初始值为 true),直到条件发生变化才跳出循环继续执行。在使用 Guarded Blocks 时有以下几个步骤需要注意:
假设 guardedJoy 方法必须要等待另一线程为共享变量 joy 设值才能继续执行。那么理论上可以用一个简单的条件循环来实现,但在等待过程中 guardedJoy 方法不停的检查循环条件实际上是一种资源浪费。
public void guardedJoy() {
// Simple loop guard. Wastes
// processor time. Don't do this!
while(!joy) {}
System.out.println("Joy has been achieved!");
}
更加高效的保护方法是调用 Object.wait 将当前线程挂起,直到有另一线程发起事件通知(尽管通知的事件不一定是当前线程等待的事件)。
public synchronized void guardedJoy() {
// This guard only loops once for each special event, which may not
// be the event we're waiting for.
while(!joy) {
try {
wait();
} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");
}
注意:一定要在循环里面调用 wait 方法,不要想当然的认为线程唤醒后循环条件一定发生了改变。
和其他可以暂停线程执行的方法一样,wait 方法会抛出 InterruptedException,在上面的例子中,因为我们关心的是 joy 的值,所以忽略了 InterruptedException。
为什么 guardedJoy 是 synchronized 的?假设 d 是用来调用 wait 的对象,当一个线程调用 d.wait,它必须要拥有 d的内部锁(否则会抛出异常),获得 d 的内部锁的最简单方法是在一个 synchronized 方法里面调用 wait。
当一个线程调用 wait 方法时,它释放锁并挂起。然后另一个线程请求并获得这个锁并调用 Object.notifyAll 通知所有等待该锁的线程。
public synchronized notifyJoy() {
joy = true;
notifyAll();
}
当第二个线程释放这个该锁后,第一个线程再次请求该锁,从 wait 方法返回并继续执行。
注意:还有另外一个通知方法,notify(),它只会唤醒一个线程。但由于它并不允许指定哪一个线程被唤醒,所以一般只在大规模并发应用(即系统有大量相似任务的线程)中使用。因为对于大规模并发应用,我们其实并不关心哪一个线程被唤醒。
现在我们使用 Guarded blocks 创建一个生产者/消费者应用。这类应用需要在两个线程之间共享数据:生产者生产数据,消费者使用数据。两个线程通过共享对象通信。在这里,线程协同工作的关键是:生产者发布数据之前,消费者不能够去读取数据;消费者没有读取旧数据前,生产者不能发布新数据。
在下面的例子中,数据通过 Drop 对象共享的一系列文本消息:
public class Drop {
// Message sent from producer
// to consumer.
private String message;
// True if consumer should wait
// for producer to send message,
// false if producer should wait for
// consumer to retrieve message.
private boolean empty = true;
public synchronized String take() {
// Wait until message is
// available.
while (empty) {
try {
wait();
} catch (InterruptedException e) {}
}
// Toggle status.
empty = true;
// Notify producer that
// status has changed.
notifyAll();
return message;
}
public synchronized void put(String message) {
// Wait until message has
// been retrieved.
while (!empty) {
try {
wait();
} catch (InterruptedException e) {}
}
// Toggle status.
empty = false;
// Store message.
this.message = message;
// Notify consumer that status
// has changed.
notifyAll();
}
}
Producer 是生产者线程,发送一组消息,字符串 DONE 表示所有消息都已经发送完成。为了模拟现实情况,生产者线程还会在消息发送时随机的暂停。
public class Producer implements Runnable {
private Drop drop;
public Producer(Drop drop) {
this.drop = drop;
}
public void run() {
String importantInfo[] = { "Mares eat oats", "Does eat oats", "Little lambs eat ivy",
"A kid will eat ivy too" };
Random random = new Random();
for (int i = 0; i < importantInfo.length; i++) {
drop.put(importantInfo[i]);
try {
Thread.sleep(random.nextInt(5000));
} catch (InterruptedException e) {
}
}
drop.put("DONE");
}
}
Consumer 是消费者线程,读取消息并打印出来,直到读取到字符串 DONE 为止。消费者线程在消息读取时也会随机的暂停。
public class Consumer implements Runnable {
private Drop drop;
public Consumer(Drop drop) {
this.drop = drop;
}
public void run() {
Random random = new Random();
for (String message = drop.take(); !message.equals("DONE"); message = drop.take()) {
System.out.format("MESSAGE RECEIVED: %s%n", message);
try {
Thread.sleep(random.nextInt(5000));
} catch (InterruptedException e) {
}
}
}
}
ProducerConsumerExample 是主线程,它启动生产者线程和消费者线程。
public class ProducerConsumerExample {
public static void main(String[] args) {
Drop drop = new Drop();
(new Thread(new Producer(drop))).start();
(new Thread(new Consumer(drop))).start();
}
}