前端代理
为让大家尽快了解Envoy如何作为前端代理,我们发布了一个docker compose沙箱,这个沙箱部署了一个前端Envoy代理和几个后端服务(简单的flask应用),并与一个正在运行的合作的Envoy服务。这三个容器将部署在名为envoymesh
的虚拟网格中。
该Docker compose的部署图如下所示:
所有传入的请求都通过前端Envoy进行路由,该Envoy充当位于envoymesh
网络边缘的反向代理。端口80
通过docker compose映射到端口8000
(请参阅/examples/front-proxy/docker-compose.yml)。此外,请注意,由前端Envoy路由到容器内的服务,实际上所有流量都是路由到服务的Envoy代理(在/examples/front-proxy/front-envoy.json中设置的路由)。反过来,服务的Envoy通过环回地址(/examples/front-proxy/service-envoy.json中的路由设置)将请求路由到flask应用程序。此阐述了Envoy与您服务搭配的优势:所有请求都由Envoy代理,并有效地路由到您的服务。
运行沙箱
以下文档将按照上图中所述的envoy集群进行运行设置。
第1步:安装Docker工具集
请您确保已经安装了最新版本的docker
,docker-compose
和docker-machine
。
Docker工具箱提供了简单的方法来获取这些工具。
第2步:设置Docker Machine
首先让我们创建一个新的机器来容纳容器:
$ docker-machine create --driver virtualbox default
$ eval $(docker-machine env default)
第3步:建立本地Envoy克隆仓库,并启动所有的容器
如果你还没有克隆Envoy仓库,请用git克隆git clone git@github.com:envoyproxy/envoy
或者git clone https://github.com/envoyproxy/envoy.git
:
$ pwd
envoy/examples/front-proxy
$ docker-compose up --build -d
$ docker-compose ps
Name Command State Ports
-------------------------------------------------------------------------------------------------------------
example_service1_1 /bin/sh -c /usr/local/bin/ ... Up 80/tcp
example_service2_1 /bin/sh -c /usr/local/bin/ ... Up 80/tcp
example_front-envoy_1 /bin/sh -c /usr/local/bin/ ... Up 0.0.0.0:8000->80/tcp, 0.0.0.0:8001->8001/tcp
第4步:测试Envoy的路由功能
您现在可以通过前端Envoy向两个服务发送请求。
对于service1:
$ curl -v $(docker-machine ip default):8000/service/1
* Trying 192.168.99.100...
* Connected to 192.168.99.100 (192.168.99.100) port 8000 (#0)
> GET /service/1 HTTP/1.1
> Host: 192.168.99.100:8000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/html; charset=utf-8
< content-length: 89
< x-envoy-upstream-service-time: 1
< server: envoy
< date: Fri, 26 Aug 2016 19:39:19 GMT
< x-envoy-protocol-version: HTTP/1.1
<
Hello from behind Envoy (service 1)! hostname: f26027f1ce28 resolvedhostname: 172.19.0.6
* Connection #0 to host 192.168.99.100 left intact
对于service2:
$ curl -v $(docker-machine ip default):8000/service/2
* Trying 192.168.99.100...
* Connected to 192.168.99.100 (192.168.99.100) port 8000 (#0)
> GET /service/2 HTTP/1.1
> Host: 192.168.99.100:8000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/html; charset=utf-8
< content-length: 89
< x-envoy-upstream-service-time: 2
< server: envoy
< date: Fri, 26 Aug 2016 19:39:23 GMT
< x-envoy-protocol-version: HTTP/1.1
<
Hello from behind Envoy (service 2)! hostname: 92f4a3737bbc resolvedhostname: 172.19.0.2
* Connection #0 to host 192.168.99.100 left intact
请注意,每个请求在发送给前端Envoy时,已正确路由到相应的应用程序。
第5步:测试Envoy的负载均衡能力
现在扩展我们的service1节点来演示Envoy的集群能力。
$ docker-compose scale service1=3
Creating and starting example_service1_2 ... done
Creating and starting example_service1_3 ... done
现在,如果我们多次向service1发送请求,前端Envoy会将请求通过负载均衡发给三个service1服务:
$ curl -v $(docker-machine ip default):8000/service/1
* Trying 192.168.99.100...
* Connected to 192.168.99.100 (192.168.99.100) port 8000 (#0)
> GET /service/1 HTTP/1.1
> Host: 192.168.99.100:8000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/html; charset=utf-8
< content-length: 89
< x-envoy-upstream-service-time: 1
< server: envoy
< date: Fri, 26 Aug 2016 19:40:21 GMT
< x-envoy-protocol-version: HTTP/1.1
<
Hello from behind Envoy (service 1)! hostname: 85ac151715c6 resolvedhostname: 172.19.0.3
* Connection #0 to host 192.168.99.100 left intact
$ curl -v $(docker-machine ip default):8000/service/1
* Trying 192.168.99.100...
* Connected to 192.168.99.100 (192.168.99.100) port 8000 (#0)
> GET /service/1 HTTP/1.1
> Host: 192.168.99.100:8000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/html; charset=utf-8
< content-length: 89
< x-envoy-upstream-service-time: 1
< server: envoy
< date: Fri, 26 Aug 2016 19:40:22 GMT
< x-envoy-protocol-version: HTTP/1.1
<
Hello from behind Envoy (service 1)! hostname: 20da22cfc955 resolvedhostname: 172.19.0.5
* Connection #0 to host 192.168.99.100 left intact
$ curl -v $(docker-machine ip default):8000/service/1
* Trying 192.168.99.100...
* Connected to 192.168.99.100 (192.168.99.100) port 8000 (#0)
> GET /service/1 HTTP/1.1
> Host: 192.168.99.100:8000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/html; charset=utf-8
< content-length: 89
< x-envoy-upstream-service-time: 1
< server: envoy
< date: Fri, 26 Aug 2016 19:40:24 GMT
< x-envoy-protocol-version: HTTP/1.1
<
Hello from behind Envoy (service 1)! hostname: f26027f1ce28 resolvedhostname: 172.19.0.6
* Connection #0 to host 192.168.99.100 left intact
第6步:进入容器开启curl服务
除了使用主机上的curl外,您还可以自己输入容器并从里面curl。要输入一个容器镜像,你可以使用docker-compose exec <container_name> /bin/bash
。例如,我们可以进入front-envoy
容器,并在执行本地的curl服务:
$ docker-compose exec front-envoy /bin/bash
root@81288499f9d7:/# curl localhost:80/service/1
Hello from behind Envoy (service 1)! hostname: 85ac151715c6 resolvedhostname: 172.19.0.3
root@81288499f9d7:/# curl localhost:80/service/1
Hello from behind Envoy (service 1)! hostname: 20da22cfc955 resolvedhostname: 172.19.0.5
root@81288499f9d7:/# curl localhost:80/service/1
Hello from behind Envoy (service 1)! hostname: f26027f1ce28 resolvedhostname: 172.19.0.6
root@81288499f9d7:/# curl localhost:80/service/2
Hello from behind Envoy (service 2)! hostname: 92f4a3737bbc resolvedhostname: 172.19.0.2
第7步:进入容器和使用curl管理
当Envoy运行时,它也将admin
连接到所需的端口。在示例配置admin
被绑定到8001
端口.我们可以curl
它获得有用的信息。例如,您可以curl
/server_info
来获取有关您正在运行的Envoy版本信息。另外,你可以·curl· ·/stats·得到统计数据。例如在frontenvoy
里面我们可以得到:
$ docker-compose exec front-envoy /bin/bash
root@e654c2c83277:/# curl localhost:8001/server_info
envoy 10e00b/RELEASE live 142 142 0
root@e654c2c83277:/# curl localhost:8001/stats
cluster.service1.external.upstream_rq_200: 7
...
cluster.service1.membership_change: 2
cluster.service1.membership_total: 3
...
cluster.service1.upstream_cx_http2_total: 3
...
cluster.service1.upstream_rq_total: 7
...
cluster.service2.external.upstream_rq_200: 2
...
cluster.service2.membership_change: 1
cluster.service2.membership_total: 1
...
cluster.service2.upstream_cx_http2_total: 1
...
cluster.service2.upstream_rq_total: 2
...
请注意,我们还可以获得上游群集的成员数量,完成的请求数量,有关http入站的信息以及其他大量有用的统计信息。