聚合
Aggregation
The Aggregate
option allows adding one or more aggregation functions.
package main
import (
"context"
"<project>/ent"
"<project>/ent/payment"
"<project>/ent/pet"
)
func Do(ctx context.Context, client *ent.Client) {
// Aggregate one field.
sum, err := client.Payment.Query().
Aggregate(
ent.Sum(payment.Amount),
).
Int(ctx)
// Aggregate multiple fields.
var v []struct {
Sum, Min, Max, Count int
}
err := client.Pet.Query().
Aggregate(
ent.Sum(pet.FieldAge),
ent.Min(pet.FieldAge),
ent.Max(pet.FieldAge),
ent.Count(),
).
Scan(ctx, &v)
}
Group By
Group by name
and age
fields of all users, and sum their total age.
package main
import (
"context"
"<project>/ent"
"<project>/ent/user"
)
func Do(ctx context.Context, client *ent.Client) {
var v []struct {
Name string `json:"name"`
Age int `json:"age"`
Sum int `json:"sum"`
Count int `json:"count"`
}
err := client.User.Query().
GroupBy(user.FieldName, user.FieldAge).
Aggregate(ent.Count(), ent.Sum(user.FieldAge)).
Scan(ctx, &v)
}
Group by one field.
package main
import (
"context"
"<project>/ent"
"<project>/ent/user"
)
func Do(ctx context.Context, client *ent.Client) {
names, err := client.User.
Query().
GroupBy(user.FieldName).
Strings(ctx)
}
Group By Edge
Custom aggregation functions can be useful if you want to write your own storage-specific logic.
The following shows how to group by the id
and the name
of all users and calculate the average age
of their pets.
package main
import (
"context"
"log"
"<project>/ent"
"<project>/ent/pet"
"<project>/ent/user"
)
func Do(ctx context.Context, client *ent.Client) {
var users []struct {
ID int
Name string
Average float64
}
err := client.User.Query().
GroupBy(user.FieldID, user.FieldName).
Aggregate(func(s *sql.Selector) string {
t := sql.Table(pet.Table)
s.Join(t).On(s.C(user.FieldID), t.C(pet.OwnerColumn))
return sql.As(sql.Avg(t.C(pet.FieldAge)), "average")
}).
Scan(ctx, &users)
}
Having + Group By
Custom SQL modifiers can be useful if you want to control all query parts. The following shows how to retrieve the oldest users for each role.
package main
import (
"context"
"log"
"entgo.io/ent/dialect/sql"
"<project>/ent"
"<project>/ent/user"
)
func Do(ctx context.Context, client *ent.Client) {
var users []struct {
Id Int
Age Int
Role string
}
err := client.User.Query().
Modify(func(s *sql.Selector) {
s.GroupBy(user.Role)
s.Having(
sql.EQ(
user.FieldAge,
sql.Raw(sql.Max(user.FieldAge)),
),
)
}).
ScanX(ctx, &users)
}
Note: The sql.Raw
is crucial to have. It tells the predicate that sql.Max
is not an argument.
The above code essentially generates the following SQL query:
SELECT * FROM user GROUP BY user.role HAVING user.age = MAX(user.age)